[1] SRINIVASAN K,DASTOOR P H,RADHAKRISHNAIAH P,et al.FDAS:a knowledge-based framework for analysis of defects in woven textile structures[J].The Journal of the Textile Institute,1992,83(3):431-448. [2] 曾晏林,贺壹婷,蔺瑶,等.基于BCE-YOLOv5的苹果叶部病害检测方法[J].江苏农业科学,2023,51(15):155-163. [3] 周绍发,肖小玲,刘忠意,等.改进的基于YOLOv5s苹果树叶病害检测[J].江苏农业科学,2023,51(13):212-220. [4] 刘洋,冯全,王书志,等.基于轻量级CNN的植物病害识别方法及移动端应用[J].农业工程学报,2019,35(17):194-204. [5] 张俊宁,毕泽洋,闫英,等.基于注意力机制与改进YOLO的温室番茄快速识别[J].农业机械学报,2023,54(5):236-243. [6] 张小花,李浩林,李善军,等.基于EfficientDet-D1的草莓快速检测及分类[J].华中农业大学学报,2022,41(6):262-269. [7] 袁杰,谢霖伟,郭旭,等.基于改进YOLOv7的苹果叶片病害检测方法[J].农业机械学报,2024,55(11):68-74. [8] HAN K,WANG Y H,TIAN Q,et al.GhostNet:more features from cheap operations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Seattle:IEEE,2020:1577-1586. [9] SALEEM M H,POTGIETER J,ARIF K M.A performance-optimized deep learning-based plant disease detection approach for horticultural crops of New Zealand[J].IEEE Access,2022,10:89798-89822. [10] SUN Y Y,JIANG Z H,ZHANG L P,et al.SLIC—SVM based leaf diseases saliency map extraction of tea plant[J].Computers and Electronics in Agriculture,2019,157:102-109. [11] BISWAS S,JAGYASI B,SINGH B P,et al.Severity identification of potato late blight disease from crop images captured under uncontrolled environment[C]//2014 IEEE Canada International Humanitarian Technology Conference-(IHTC).Montreal:IEEE,2014:1-5. [12] KHITTHUK C,SRIKAEW A,ATTAKITMONGCOL K,et al.Plant leaf disease diagnosis from color imagery using co-occurrence matrix and artificial intelligence system[C]//2018 International Electrical Engineering Congress(iEECON).Krabi:IEEE,2018:1-4. [13] SETHY P K,BARPANDA N K,RATH A K,et al.Deep feature based rice leaf disease identification using support vector machine[J].Computers and Electronics in Agriculture,2020,175:105527. [14] SINGH S,GUPTA S,TANTA A,et al.Extraction of multiple diseases in apple leaf using machine learning[J].International Journal of Image and Graphics,2022,22(3):2140009. [15] ALI S,HASSAN M,KIM J Y,et al.FF-PCA-LDA:intelligent feature fusion based PCA-LDA classification system for plant leaf diseases[J].Applied Sciences,2022,12(7):3514. [16] HASAN R I,YUSUF S M,ALZUBAIDI L.Review of the state of the art of deep learning for plant diseases:a broad analysis and discussion[J].Plants,2020,9(10):1302. [17] REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. [18] LIU B,ZHAO W C,SUN Q Q.Study of object detection based on faster R-CNN[C]//2017 Chinese Automation Congress(CAC).Jinan:IEEE,2017:6233-6236. [19] USHADEVI G,GOKULNATH B V.A survey on plant disease prediction using machine learning and deep learning techniques[J].Inteligencia Artificial,2020,23(65):136-154. [20] SUN H,XU H,LIU B,et al.MEAN-SSD:a novel real-time detector for apple leaf diseases using improved light-weight convolutional neural networks[J].Computers and Electronics in Agriculture,2021,189:106379. [21] OBSIE E Y,QU H C,ZHANG Y J,et al.YOLOv5s-CA:an improved YOLOv5 based on the attention mechanism for mummy berry disease detection[J].Agriculture,2023,13(1):78. [22] REHMAN S,ATTIQUE KHAN M,ALHAISONI M,et al.A framework of deep optimal features selection for apple leaf diseases recognition[J].Computers,Materials and Continua,2023,75(1):697-714. [23] KITSIRANUWAT S,KAWICHAI T,KHANARSA P.Identification and classification of diseases based on object detection and majority voting of bounding boxes[J].Journal of Advances in Information Technology,2023,14(6):1301-1311. [24] 叶东东,徐霞,丁玉庭.深度学习与机器视觉在鱼类加工与品质监测中的研究进展[J/OL].食品与发酵工业,2024:389-398.(2024-03-21).https://link.cnki.net/doi/10.13995/j.cnki.11-1802/ts.038903. [25] 李键,李华,胡翔坤,等.基于深度学习的表面缺陷检测技术研究进展[J].计算机集成制造系统,2024,30(3):774-790. [26] 夏玉果,董天天,丁晟.基于轻量化深度迁移神经网络的电子元器件识别[J].电子器件,2023,46(6):1673-1679. [27] 贺苏强. 基于显微高光谱成像技术的癌细胞鉴别方法研究[D].西安:西安石油大学,2023. [28] 蔡舒妤,殷航,史涛,等.基于ResNet-LSTM的航空发动机性能异常检测方法[J].航空发动机,2024,50(1):135-142. [29] 杜浩飞,张超,李建军.基于SENet-ResNext-LSTM的风机轴承故障诊断[J].机械强度,2023,45(6):1271-1279. [30] 曹义亲,刘文才,徐露.基于 YOLOX-αSMV的带钢材料表面缺陷检测算法[J/OL].华东交通大学学报,2024:109-117.(2024-03-28).https://link.cnki.net/doi/10.16749/j.cnki.jecjtu.20240326.010. [31] WOO S,PARK J,LEE J Y,et al.CBAM:convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision(ECCV). Germany:Springer,2018:3-19. [32] ZHANG S,CHE S B,LIU Z,et al.A real-time and lightweight traffic sign detection method based on ghost-YOLO[J].Multimedia Tools and Applications,2023,82(17):26063-26087. [33] 高明. 基于进化算法的卷积神经网络图像去噪算法研究[D].南京:南京邮电大学,2023. [34] 郭惠萍,曹亚州,王晨思,等.基于迁移学习的苹果落叶病识别与应用[J/OL].农业工程学报,2024:1-9.(2024-03-06).https://kns.cnki.net/kcms/detail/11.2047.S.20240301.1738.030.html. [35] 宋中山,肖博文,艾勇,等.基于改进YOLOv4的轻量化目标检测算法[J].电子测量技术,2022,45(16):142-152. [36] QI C,GAO J F,PEARSON S,et al.Tea Chrysanthemum detection under unstructured environments using the TC-YOLO model[J].Expert Systems with Applications,2022,193:116473. [37] TAN M,PANG R,LE Q V.EfficientDet:scalable and efficient object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Publisher:IEEE,2020. [38] 张会敏,谢泽奇.基于多尺度注意力卷积神经网络的苹果叶部病害识别方法[J].江苏农业科学,2023,51(16):154-161. |