Journal of Northern Agriculture ›› 2023, Vol. 51 ›› Issue (5): 93-102.doi: 10.12190/j.issn.2096-1197.2023.05.10
• Agrotechny • Previous Articles Next Articles
JING Xiangzhu, SUN Xia, GUO Yemin, ZHAO Wenping, GUO Zhen, SANG Maosheng
Received:
2023-09-20
Online:
2023-10-20
Published:
2024-01-04
CLC Number:
JING Xiangzhu, SUN Xia, GUO Yemin, ZHAO Wenping, GUO Zhen, SANG Maosheng. Research progress of spectral imaging technology in maize seed quality detection[J].Journal of Northern Agriculture, 2023, 51(5): 93-102.
[1] |
张伏, 张朝臣, 陈自均, 等. 光谱检测技术在种子质量检测中的应用[J]. 中国农机化学报, 2021, 42(2):109-114.
doi: 10.13733/j.jcam.issn.2095-5553.2021.02.016 |
[2] | 杨小倩, 郅慧, 张辉, 等. 玉米不同部位化学成分、药理作用、利用现状研究进展[J]. 吉林中医药, 2019, 39(6):837-840. |
[3] | 周迎鑫, 李玥峤, 吕庆雪, 等. 玉米子粒主要营养成分合成调控研究进展[J]. 玉米科学, 2023, 31(2):59-66. |
[4] |
REN X G, TIAN H Q, ZHAO K, et al. Research on pH value detection method during maize silage secondary fermentation based on computer vision[J]. Agriculture, 2022, 12(10):1623.
doi: 10.3390/agriculture12101623 |
[5] |
KANG Z, HUANG T C, ZENG S, et al. A method for detection of corn kernel mildew based on co-clustering algorithm with hyperspectral image technology[J]. Sensors, 2022, 22(14):5333.
doi: 10.3390/s22145333 |
[6] | 程锦锋, 方贵盛, 高惠芳. 表面缺陷检测的机器视觉技术研究进展[J]. 计算机应用研究, 2023, 40(4):967-977. |
[7] | 王建伟, 陶飞, 郭双欢, 等. 近红外光谱技术在食品安全检测中的应用进展[J]. 食品工业, 2021, 42(12):461-464. |
[8] |
MISHRA G, PANDA B K, RAMIREZ W A, et al. Research advancements in optical imaging and spectroscopic techniques for nondestructive detection of mold infection and mycotoxins in cereal grains and nuts[J]. Comprehensive Reviews in Food Science and Food Safety, 2021, 20(5):4612-4651.
doi: 10.1111/1541-4337.12801 pmid: 34338431 |
[9] |
TU K L, WEN S Z, CHENG Y, et al. A non-destructive and highly efficient model for detecting the genuineness of maize variety“INGKE 968” using machine vision combined with deep learning[J]. Computers and Electronics in Agriculture, 2021, 182:106002.
doi: 10.1016/j.compag.2021.106002 |
[10] |
ALTUNTA Y, CÖMERT Z, KOCAMAZ A F. Identification of haploid and diploid maize seeds using convolutional neural networks and a transfer learning approach[J]. Computers and Electronics in Agriculture, 2019, 163:104874.
doi: 10.1016/j.compag.2019.104874 |
[11] |
冯晓, 张辉, 周蕊, 等. 基于深度学习和籽粒双面特征的玉米品种识别[J]. 系统仿真学报, 2021, 33(12):2983-2991.
doi: 10.16182/j.issn1004731x.joss.21-FZ0771 |
[12] |
FAN Y M, MA S C, WU T T. Individual wheat kernels vigor assessment based on NIR spectroscopy coupled with machine learning methodologies[J]. Infrared Physics and Technology, 2020, 105:103213.
doi: 10.1016/j.infrared.2020.103213 |
[13] | 熊春晖, 佘永新, 焦逊, 等. 高光谱成像技术在农产品无损检测中的应用[J]. 粮油食品科技, 2023, 31(1):109-122. |
[14] |
RIEFOLO C, ANTELMI I, CASTRIGNANO A, et al. Assessment of the hyperspectral data analysis as a tool to diagnose Xylella fastidiosa in the asymptomatic leaves of olive plants[J]. Plants, 2021, 10(4):683.
doi: 10.3390/plants10040683 |
[15] |
MANGANIELLO G, NICASTRO N, CAPUTO M, et al. Functional hyperspectral imaging by high-related vegetation indices to track the wide-spectrum Trichoderma biocontrol activity against soil-borne diseases of baby-leaf vegetables[J]. Frontiers in Plant Science, 2021, 12:630059.
doi: 10.3389/fpls.2021.630059 |
[16] | 张瀚文, 李野, 江晟, 等. 近红外高光谱大米典型特征提取分类识别[J]. 吉林大学学报(理学版), 2022, 60(3):655-663. |
[17] | 黄锋华, 燕红文, 苗荣慧. 高光谱技术结合GLCM的油桃品种判别研究[J]. 农业技术与装备, 2021(12):5-7. |
[18] | 郑守国, 翁士状, 刘瑜凡, 等. 融合高光谱成像多类特征的名优牛肉种类鉴别[J]. 激光杂志, 2021, 42(8):57-61. |
[19] | 李士静, 潘羲, 陈熙卓, 等. 基于高光谱信息的烟叶分级方法比较[J]. 烟草科技, 2021, 54(10):82-91. |
[20] | 郭榛, 金诚谦, 刘鹏. 光谱分析和光谱成像技术检测大豆品质的研究进展[J]. 大豆科学, 2022, 41(1):99-106. |
[21] |
GOETZ A F H, VANE G, SOLOMON J E, et al. Imaging spectrometry for earth remote sensing[J]. Science, 1985, 228(4704):1147-1153.
doi: 10.1126/science.228.4704.1147 pmid: 17735325 |
[22] | 王建宇, 李春来. 高光谱遥感成像技术的发展与展望[J]. 空间科学学报, 2021, 41(1):22-33. |
[23] | 崔莹莹, 杨铭铎, 方伟佳, 等. 高光谱成像技术在红肉食用品质检测中的应用研究进展[J]. 肉类研究, 2019, 33(6):70-76. |
[24] | 孙建非. 基于高光谱成像技术的花生多项品质参数无损检测方法的研究[D]. 淄博: 山东理工大学, 2020. |
[25] |
ARIANA D P, LU R. Quality evaluation of pickling cucumbers using hyperspectral reflectance and transmittance imaging:Part Ⅰ. Development of a prototype[J]. Sensing and Instrumentation for Food Quality and Safety, 2008, 2:144-151.
doi: 10.1007/s11694-008-9057-x |
[26] | 刘欢, 王雅倩, 王晓明, 等. 基于近红外高光谱成像技术的小麦不完善粒检测方法研究[J]. 光谱学与光谱分析, 2019, 39(1):223-229. |
[27] | 吴永清, 李明, 张波, 等. 高光谱成像技术在谷物品质检测中的应用进展[J]. 中国粮油学报, 2021, 36(5):165-173. |
[28] | 李伟, 赵雪晴, 刘强. 基于高光谱图像光谱变量和颜色特征的霉变玉米籽粒识别[J]. 食品与机械, 2022, 38(12):112-120. |
[29] | 孙慧婷, 方晓, 徐辉. 基于图像形状特征和纹理的中药材牡丹皮规格分类研究[J]. 黑龙江工程学院学报, 2019, 33(4):40-45. |
[30] | 刘煊. 不同噪声条件下的高光谱图像特征提取与分类的研究与应用[D]. 开封: 河南大学, 2022. |
[31] | 孙红敏, 董元, 李晓明, 等. 基于高光谱的小米产地溯源策略与模型研究[J]. 东北农业大学学报, 2021, 52(7):79-88. |
[32] | 王靖会, 程娇娇, 刘洋, 等. 基于高光谱成像技术鉴别大米品种[J]. 中国农业科技导报, 2021, 23(9):121-128. |
[33] | 白宗秀, 朱荣光, 王世昌, 等. 高光谱图像结合特征变量筛选定量检测羊肉中狐狸肉掺假[J]. 农业工程学报, 2021, 37(17):276-284. |
[34] | 刘燕德, 李茂鹏, 胡军, 等. 近红外高光谱的脐橙粒化检测研究[J]. 光谱学与光谱分析, 2022, 42(5):1366-1371. |
[35] |
ZHAO J L, FANG Y, CHU G M, et al. Identification of leaf-scale wheat powdery mildew (Blumeria graminis f. sp. tritici) combining hyperspectral imaging and an SVM classifier[J]. Plants, 2020, 9(8):936.
doi: 10.3390/plants9080936 |
[36] |
GARRIGA M, ROMERO-BRAVO S, ESTRADA F, et al. Estimating carbon isotope discrimination and grain yield of bread wheat grown under water-limited and full irrigation conditions by hyperspectral canopy reflectance and multilinear regression analysis[J]. International Journal of Remote Sensing, 2021, 42(8):2848-2871.
doi: 10.1080/01431161.2020.1854888 |
[37] | 刘金秀, 贺小伟, 罗华平, 等. 基于高光谱成像技术的小白杏成熟度判别模型[J]. 食品研究与开发, 2022, 43(15):158-165. |
[38] |
WAKHOLI C, KANDPAL L M, LEE H, et al. Rapid assessment of corn seed viability using short wave infrared line-scan hyperspectral imaging and chemometrics[J]. Sensors and Actuators B:Chemical, 2018, 255:498-507.
doi: 10.1016/j.snb.2017.08.036 |
[39] | 王亚丽, 彭彦昆, 赵鑫龙, 等. 玉米种子活力逐粒无损检测与分级装置研究[J]. 农业机械学报, 2020, 51(2):350-356. |
[40] |
FENG L, ZHU S S, ZHANG C, et al. Identification of maize kernel vigor under different accelerated aging times using hyperspectral imaging[J]. Molecules, 2018, 23(12):3078.
doi: 10.3390/molecules23123078 |
[41] |
ZHANG L, ZHANG Q, WU J, et al. Moisture detection of single corn seed based on hyperspectral imaging and deep learning[J]. Infrared Physics and Technology, 2022, 125:104279.
doi: 10.1016/j.infrared.2022.104279 |
[42] |
WANG C P, HUANG W Q, FAN S X, et al. Moisture content detection of maize kernels based on hyperspectral imaging technology and CARS[J]. Laser and Optoelectronics Progress, 2016, 53(12):123001.
doi: 10.3788/LOP |
[43] | 廉孟茹, 张淑娟, 任锐, 等. 基于高光谱技术的鲜食水果玉米含水率无损检测[J]. 食品与机械, 2021, 37(9):127-132. |
[44] |
KIMULI D, WANG W, WANG W, et al. Application of SWIR hyperspectral imaging and chemometrics for identification of aflatoxin B1 contaminated maize kernels[J]. Infrared Physics and Technology, 2018, 89:351-362.
doi: 10.1016/j.infrared.2018.01.026 |
[45] |
YANG D, YUAN J H, CHANG Q, et al. Early determination of mildew status in storage maize kernels using hyperspectral imaging combined with the stacked sparse auto-encoder algorithm[J]. Infrared Physics and Technology, 2020, 109:103412.
doi: 10.1016/j.infrared.2020.103412 |
[46] |
SHEN F, HUANG Y, JIANG X S, et al. On-line prediction of hazardous fungal contamination in stored maize by integrating Vis/NIR spectroscopy and computer vision[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2020, 229:118012.
doi: 10.1016/j.saa.2019.118012 |
[47] |
DA CONCEICÃO R R P, SIMEONE M L F, QUEIROZ V A V, et al. Application of near-infrared hyperspectral (NIR) images combined with multivariate image analysis in the differentiation of two mycotoxicogenic Fusarium species associated with maize[J]. Food Chemistry, 2021, 344:128615.
doi: 10.1016/j.foodchem.2020.128615 |
[48] | 康孝存, 沈广辉, 徐剑宏, 等. 玉米中伏马毒素B污染高光谱快速检测模型研究[J]. 中国粮油学报, 2023, 38(8):41-48. |
[49] |
ZHANG J, DAI L M, CHENG F. Classification of frozen corn seeds using hyperspectral VIS/NIR reflectance imaging[J]. Molecules, 2019, 24(1):149.
doi: 10.3390/molecules24010149 |
[50] |
WANG Y L, PENG Y K, ZHUANG Q B, et al. Feasibility analysis of NIR for detecting sweet corn seeds vigor[J]. Journal of Cereal Science, 2020, 93:102977.
doi: 10.1016/j.jcs.2020.102977 |
[51] |
ZHOU Q, HUANG W, TIAN X, et al. Identification of the variety of maize seeds based on hyperspectral images coupled with convolutional neural networks and subregional voting[J]. Journal of the Science of Food and Agriculture, 2021, 101(11):4532-4542.
doi: 10.1002/jsfa.11095 pmid: 33452811 |
[52] | 王庆国, 黄敏, 朱启兵, 等. 基于高光谱图像的玉米种子产地与年份鉴别[J]. 食品与生物技术学报, 2014, 33(2):163-170. |
[1] | WU Liqiang, WANG Xingfen, ZHANG Yan, KE Huifeng, LIU Sujuan, LI Zhikun, XU Dongyong, YANG Jun, SUN Zhengwen, GU Qishen, CHEN Bin, WANG Hongzhe, LU Huaiyu, ZHANG Guiyin, MA Zhiying. Creation and application of new cotton varieties with early maturity,high yield,good fibre quality,high adversity resistance and suitability for mechanization [J]. Journal of Northern Agriculture, 2023, 51(6): 1-9. |
[2] | DU Erxiao, LI Huanchun, REN Yongfeng, KANG Wenqin, ZHENG Na, BAI Hongmei, ZHAO Yiwen, ZHAO Peiyi. Effects of nitrogen fertilizer reduction and substitution on potato field soil physicochemical properties,potato yield and potato quality [J]. Journal of Northern Agriculture, 2023, 51(6): 10-17. |
[3] | SUN Liping, GAO Minli, ZHANG Yongmin, JIN Yingling, HAN Rong. Taste type tomato quality indexes analysis and comprehensive evaluation [J]. Journal of Northern Agriculture, 2023, 51(5): 67-74. |
[4] | ZHAO Yan, QIU Pengcheng, WU Lingbo, WANG Le, LIU Jinglei. Multivariate statistical analysis of tomato nutrients and sensory quality evaluation [J]. Journal of Northern Agriculture, 2023, 51(5): 75-83. |
[5] | CHEN Xusheng, ZHAO Liang, DI Jiachun. Comparative analysis of main characters between island-upland hybrid cotton and island-island hybrid cotton [J]. Journal of Northern Agriculture, 2023, 51(3): 22-28. |
[6] | HU Liushen, XIONG Shuai, LI Chunxi, SHEN Jinnan, HU Xiaoying, YIN Jigen, HE Xiuping. Effects of 1-Methylcyclopropene on postharvest storage quality of Xinfengmilu peach fruit [J]. Journal of Northern Agriculture, 2023, 51(3): 78-83. |
[7] | MENG Jiali, SHEN Hong, WU Shaojun, YANG Nianfu, YU Xiang, ZHANG Lijie. The effects of reduced chemical fertilizer application on the growth and fruit quality of facility watermelon [J]. Journal of Northern Agriculture, 2023, 51(3): 84-90. |
[8] | WANG Xiaoyan, TAN Xuexiang. Analysis on research hotspots and trends of high quality agricultural development in China [J]. Journal of Northern Agriculture, 2023, 51(3): 120-134. |
[9] | ZHENG Chengzhong, XU Zhenpeng, ZHANG Zizhen, WANG Qianjun, MEI Xue, SUN Ying, WANG Fengwu, YE Lu. Comprehensive evaluation of agronomic,quality traits and adaptability of new naked oat varieties (lines) [J]. Journal of Northern Agriculture, 2023, 51(2): 12-21. |
[10] | WANG Li, SUN Lulong, LI Zhifeng, ZHANG Xueliang, GUO Xiongxiong, LIANG Jun. Effect of different fertilizer treatments on Ruiyang apple yield and quality [J]. Journal of Northern Agriculture, 2023, 51(2): 49-55. |
[11] | YIN Jianjun, GUO Qingrui, GUO Fengqin, ZHANG Xiaojuan, WANG Li. Effects of wide and narrow row planting on photosynthetic characteristics,yield and quality of silage maize [J]. Journal of Northern Agriculture, 2023, 51(1): 16-21. |
[12] | ZHAO Yongqiang, FAN Jide, LU Xinjuan, LIU Canyu, ZHANG Biwei, YANG Qingqing, GE Jie, SHI Xinmin, YANG Feng. Development and application of a multiplex RT-PCR detection system for garlic viruses [J]. Journal of Northern Agriculture, 2023, 51(1): 22-30. |
[13] | WU Zhenting, LIU Xuefeng, LIANG Hairong, WANG Chunying, NIU Xiaoxiao, YANG Mo. Research progress in detection methods of pesticide residues in apple [J]. Journal of Northern Agriculture, 2022, 50(6): 80-87. |
[14] | ZHANG Lu, ZHAI Xiaoyu, WU Junying, GAO Shihua, WANG Xuefeng, ZHAO Yufei. Evaluation on the regeneration capacity of different oat varieties after cutting [J]. Journal of Northern Agriculture, 2022, 50(4): 26-34. |
[15] | GUO Yuanjun, HUANG Qian, WANG Niao, ZHAN Ruyi, CHEN Luting, HAO Xianglan, MENG Xin′gang. Reseach progresses in detection methods of strobilurin fungicides residues [J]. Journal of Northern Agriculture, 2022, 50(3): 81-88. |
|