畜牧与饲料科学 ›› 2023, Vol. 44 ›› Issue (1): 32-37.doi: 10.12160/j.issn.1672-5190.2023.01.005
沙萍,冀思同,曹佩佩,李梦吉,马燕芬
收稿日期:
2022-10-17
出版日期:
2023-01-30
发布日期:
2023-02-14
通讯作者:
马燕芬(1979—),女,研究员,博士,博士生导师,主要研究方向为动物营养与饲料。
作者简介:
沙萍(1999—),女,硕士研究生,主要研究方向为动物分子营养。
基金资助:
SHA Ping,JI Si-tong,CAO Pei-pei,LI Meng-ji,MA Yan-fen
Received:
2022-10-17
Online:
2023-01-30
Published:
2023-02-14
摘要:
沉默信息调节因子2相关酶3(silent information regulator 2-related enzyme 3,SIRT3)是烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NAD+)依赖性组蛋白去乙酰化酶家族成员,参与能量代谢、氧化应激和细胞凋亡等过程并起到关键作用,其调控作用与多种疾病的发生密切相关。综述了SIRT3下游转录因子腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)、线粒体通透性转换孔(mitochondrial permeability transition pore,mPTP)、核因子κB(nuclear factor-κB,NF-κB)等的调控机制,以及SIRT3在心血管疾病、肿瘤、糖尿病中的作用,以期为相关疾病的预防和治疗提供参考。
中图分类号:
沙萍, 冀思同, 曹佩佩, 李梦吉, 马燕芬. 沉默信息调节因子2相关酶3调控机制及其在疾病中的作用[J]. 畜牧与饲料科学, 2023, 44(1): 32-37.
SHA Ping, JI Si-tong, CAO Pei-pei, LI Meng-ji, MA Yan-fen. Regulatory Mechanisms of Silent Information Regulator 2-related Enzyme 3 and Its Roles in Diseases[J]. Animal Husbandry and Feed Science, 2023, 44(1): 32-37.
[1] | SUN W, LIU C X, CHEN Q H, et al. SIRT3: A new regulator of cardiovascular diseases[J]. Oxidative Medicine and Cellular Longevity, 2018, 2018:7293861. |
[2] |
SCHWER B, BUNKENBORG J, VERDIN R O, et al. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27):10224-10229.
doi: 10.1073/pnas.0603968103 pmid: 16788062 |
[3] |
HALLOWS W C, LEE S S, DENU J M. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27):10230-10235.
doi: 10.1073/pnas.0604392103 pmid: 16790548 |
[4] |
SHIMAZU T, HIRSCHEY M D, HUA L, et al. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production[J]. Cell Metabolism, 2010, 12(6):654-661.
doi: 10.1016/j.cmet.2010.11.003 pmid: 21109197 |
[5] | YI W J, XIE X, DU M Y, et al. Green tea polyphenols ameliorate the early renal damage induced by a high-fat diet via ketogenesis/SIRT3 pathway[J]. Oxidative Medicine and Cellular Longevity, 2017, 2017:9032792. |
[6] |
YANG Y J, CIMEN H, HAN M J, et al. NAD+-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10[J]. The Journal of Biological Chemistry, 2010, 285(10):7417-7429.
doi: 10.1074/jbc.M109.053421 |
[7] |
BAUSE A S, HAIGIS M C. SIRT3 regulation of mitochondrial oxidative stress[J]. Experimental Gerontology, 2013, 48(7):634-639.
doi: 10.1016/j.exger.2012.08.007 pmid: 22964489 |
[8] |
SOMEYA S, YU W, HALLOWS W C, et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction[J]. Cell, 2010, 143(5):802-812.
doi: 10.1016/j.cell.2010.10.002 pmid: 21094524 |
[9] |
VAN DE VEN R A H, SANTOS D, HAIGIS M C. Mitochondrial sirtuins and molecular mechanisms of aging[J]. Trends in Molecular Medicine, 2017, 23(4):320-331.
doi: S1471-4914(17)30024-2 pmid: 28285806 |
[10] | SIGNORILE A, SANTERAMO A, TAMMA G, et al. Mitochondrial cAMP prevents apoptosis modulating Sirt3 protein level and OPA1 processing in cardiac myoblast cells[J]. Molecular Cell Research, 2017, 1864(2):355-366. |
[11] |
SAMANT S A, ZHANG H J, HONG Z G, et al. SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress[J]. Molecular and Cellular Biology, 2014, 34(5):807-819.
doi: 10.1128/MCB.01483-13 pmid: 24344202 |
[12] |
SUNDARESAN N R, SAMANT S A, PILLAI V B, et al. SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70[J]. Molecular and Cellular Biology, 2008, 28(20):6384-6401.
doi: 10.1128/MCB.00426-08 pmid: 18710944 |
[13] |
CHENG A W, YANG Y, ZHOU Y, et al. Mitochondrial SIRT3 mediates adaptive responses of neurons to exercise and metabolic and excitatory challenges[J]. Cell Metabolism, 2016, 23(1):128-142.
doi: 10.1016/j.cmet.2015.10.013 pmid: 26698917 |
[14] |
BOCHATON T, CROLA-DA-SILVA C, PILLOT B, et al. Inhibition of myocardial reperfusion injury by ischemic postconditioning requires sirtuin 3-mediated deacetylation of cyclophilin D[J]. Journal of Molecular and Cellular Cardiology, 2015, 84:61-69.
doi: 10.1016/j.yjmcc.2015.03.017 pmid: 25871830 |
[15] |
CHAUHAN A S, LIU X G, JING J, et al. STIM2 interacts with AMPK and regulates calcium-induced AMPK activation[J]. FASEB Journal, 2019, 33(2):2957-2970.
doi: 10.1096/fj.201801225R pmid: 30335546 |
[16] |
ZHAO W Y, ZHANG L, CHEN R, et al. SIRT3 protects against acute kidney injury via AMPK/mTOR-regulated autophagy[J]. Frontiers in Physiology, 2018, 9:1526.
doi: 10.3389/fphys.2018.01526 pmid: 30487750 |
[17] |
XIN T, LU C Z. SirT3 activates AMPK-related mitochondrial biogenesis and ameliorates sepsis-induced myocardial injury[J]. Aging, 2020, 12(16):16224-16237.
doi: 10.18632/aging.v12i16 |
[18] |
YU H L, LIU Q, CHEN G D, et al. SIRT3-AMPK signaling pathway as a protective target in endothelial dysfunction of early sepsis[J]. International Immunopharmacology, 2022, 106:108600.
doi: 10.1016/j.intimp.2022.108600 |
[19] |
HAFNER A V, DAI J, GOMES A P, et al. Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy[J]. Aging, 2010, 2(12):914-923.
doi: 10.18632/aging.v2i12 |
[20] |
YANG Y P, TIAN Y, GUO X S, et al. Ischemia injury induces mPTP opening by reducing Sirt3[J]. Neuroscience, 2021, 468:68-74.
doi: 10.1016/j.neuroscience.2021.06.003 |
[21] | OECKINGHAUS A, GHOSH S. The NF-kappaB family of transcription factors and its regulation[J]. Cold Spring Harbor Perspectives in Biology, 2009, 1(4):a000034. |
[22] | SEN R, SMALE S T. Selectivity of the NF- B response[J]. Cold Spring Harbor Perspectives in Biology, 2010, 2(4):a000257. |
[23] |
LIU L, LU H, LOOR J J, et al. Sirtuin 3 inhibits nuclear factor-κB signaling activated by a fatty acid challenge in bovine mammary epithelial cells[J]. Journal of Dairy Science, 2021, 104(12):12871-12880.
doi: 10.3168/jds.2021-20536 pmid: 34482974 |
[24] |
HU D X, LIU X B, SONG W C, et al. Roles of SIRT3 in heart failure: From bench to bedside[J]. Journal of Zhejiang University-SCIENCE B, 2016, 17(11):821-830.
doi: 10.1631/jzus.B1600253 |
[25] |
HE W B, HUANG J P, LIU Y, et al. Deletion of soluble epoxide hydrolase suppressed chronic kidney disease-related vascular calcification by restoring Sirtuin 3 expression[J]. Cell Death and Disease, 2021, 12:992.
doi: 10.1038/s41419-021-04283-6 pmid: 34689162 |
[26] |
ZULLO A, GUIDA R, SCIARRILLO R, et al. Redox homeostasis in cardiovascular disease: The role of mitochondrial sirtuins[J]. Frontiers in Endocrinology, 2022, 13:858330.
doi: 10.3389/fendo.2022.858330 |
[27] |
BELL R M, YELLON D M. There is more to life than revascularization: Therapeutic targeting of myocardial ischemia/reperfusion injury[J]. Cardiovascular Therapeutics, 2011, 29(6):e67-e79.
doi: 10.1111/cdr.2011.29.issue-6 |
[28] |
PARODI-RULLÁN R M, CHAPA-DUBOCQ X, RULLÁN P J, et al. High sensitivity of SIRT3 deficient hearts to ischemia-reperfusion is associated with mitochondrial abnormalities[J]. Frontiers in Pharmacology, 2017, 8:275.
doi: 10.3389/fphar.2017.00275 |
[29] |
HE X C, ZENG H, CHEN J X. Ablation of SIRT3 causes coronary microvascular dysfunction and impairs cardiac recovery post myocardial ischemia[J]. International Journal of Cardiology, 2016, 215:349-357.
doi: 10.1016/j.ijcard.2016.04.092 pmid: 27128560 |
[30] |
FREY N, KATUS H A, OLSON E N, et al. Hypertrophy of the heart: A new therapeutic target?[J]. Circulation, 2004, 109(13):1580-1589.
doi: 10.1161/01.CIR.0000120390.68287.BB pmid: 15066961 |
[31] |
SUNDARESAN N R, BINDU S, PILLAI V B, et al. SIRT3 blocks aging-associated tissue fibrosis in mice by deacetylating and activating glycogen synthase kinase 3β[J]. Molecular and Cellular Biology, 2015, 36(5):678-692.
doi: 10.1128/MCB.00586-15 pmid: 26667039 |
[32] |
YANG H Y, YANG T L, BAUR J A, et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival[J]. Cell, 2007, 130(6):1095-1107.
doi: 10.1016/j.cell.2007.07.035 |
[33] |
YOU J, YUE Z, CHEN S, et al. Receptor-interacting protein 140 represses Sirtuin 3 to facilitate hypertrophy, mitochondrial dysfunction and energy metabolic dysfunction in cardiomyocytes[J]. Acta Physiologica, 2017, 220(1):58-71.
doi: 10.1111/apha.2017.220.issue-1 |
[34] |
NIKIFOROV A, DÖLLE C, NIERE M, et al. Pathways and subcellular compartmentation of NAD biosynthesis in human cells: From entry of extracellular precursors to mitochondrial NAD generation[J]. The Journal of Biological Chemistry, 2011, 286(24):21767-21778.
doi: 10.1074/jbc.M110.213298 |
[35] |
YUE Z B, MA Y Z, YOU J, et al. NMNAT3 is involved in the protective effect of SIRT3 in Ang Ⅱ-induced cardiac hypertrophy[J]. Experimental Cell Research, 2016, 347(2):261-273.
doi: 10.1016/j.yexcr.2016.07.006 |
[36] |
TANG X Q, CHEN X F, CHEN H Z, et al. Mitochondrial sirtuins in cardiometabolic diseases[J]. Clinical Science, 2017, 131(16):2063-2078.
doi: 10.1042/CS20160685 |
[37] |
ZHANG S, LIU X B, BAWA-KHALFE T, et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity[J]. Nature Medicine, 2012, 18(11):1639-1642.
doi: 10.1038/nm.2919 pmid: 23104132 |
[38] |
MARQUES-ALEIXO I, SANTOS-ALVES E, MARIANI D, et al. Physical exercise prior and during treatment reduces sub-chronic doxorubicin-induced mitochondrial toxicity and oxidative stress[J]. Mitochondrion, 2015, 20:22-33.
doi: 10.1016/j.mito.2014.10.008 |
[39] |
PILLAI V B, BINDU S, SHARP W, et al. Sirt3 protects mitochondrial DNA damage and blocks the development of doxorubicin-induced cardiomyopathy in mice[J]. American Journal of Physiology Heart and Circulatory Physiology, 2016, 310(8):H962-H972.
doi: 10.1152/ajpheart.00832.2015 |
[40] |
DOLINSKY V W. The role of sirtuins in mitochondrial function and doxorubicin-induced cardiac dysfunction[J]. Biological Chemistry, 2017, 398(9):955-974.
doi: 10.1515/hsz-2016-0316 pmid: 28253192 |
[41] |
DU Q, ZHU B, ZHAI Q, et al. Sirt3 attenuates doxorubicin-induced cardiac hypertrophy and mitochondrial dysfunction via suppression of Bnip3[J]. American Journal of Translational Research, 2017, 9(7):3360-3373.
pmid: 28804553 |
[42] |
DIKALOVA A E, ITANI H A, NAZAREWICZ R R, et al. Sirt3 impairment and SOD2 hyperacetylation in vascular oxidative stress and hypertension[J]. Circulation Research, 2017, 121(5):564-574.
doi: 10.1161/CIRCRESAHA.117.310933 pmid: 28684630 |
[43] |
HUANG L, YAO T Y, CHEN J, et al. Effect of Sirt3 on retinal pigment epithelial cells in high glucose through Foxo3a/PINK1-Parkin pathway mediated mitophagy[J]. Experimental Eye Research, 2022, 218:109015.
doi: 10.1016/j.exer.2022.109015 |
[44] |
OUYANG S M, ZHANG Q Y, LOU L L, et al. The double-edged sword of SIRT3 in cancer and its therapeutic applications[J]. Frontiers in Pharmacology, 2022, 13:871560.
doi: 10.3389/fphar.2022.871560 |
[45] |
CALLONI C, MARTÍNEZ L S, GIL D F, et al. Jabuticaba[Plinia trunciflora (O. berg) kausel]protects liver of diabetic rats against mitochondrial dysfunction and oxidative stress through the modulation of SIRT3 expression[J]. Frontiers in Physiology, 2021, 12:665747.
doi: 10.3389/fphys.2021.665747 |
[46] |
HUANG X W, SHU H M, REN C Z, et al. SIRT3 improves bone regeneration and rescues diabetic fracture healing by regulating oxidative stress[J]. Biochemical and Biophysical Research Communications, 2022, 604:109-115.
doi: 10.1016/j.bbrc.2022.03.001 pmid: 35303676 |
[47] |
LI X Y, YIN Y, LI W F, et al. Omarigliptin alleviates cognitive dysfunction in streptozotocin-induced diabetic mouse[J]. Bioengineered, 2022, 13(4):9387-9396.
doi: 10.1080/21655979.2022.2055699 pmid: 35389830 |
[48] |
YANG S J, XU M T, MENG G L, et al. SIRT3 deficiency delays diabetic skin wound healing via oxidative stress and necroptosis enhancement[J]. Journal of Cellular and Molecular Medicine, 2020, 24(8):4415-4427.
doi: 10.1111/jcmm.15100 pmid: 32119761 |
[1] | 王静然, 李鹏飞, 刘苗, 陶艳琳, 刘亚男, 朱淑芬. 呼吸系统疾病与呼吸道微生态的研究进展[J]. 畜牧与饲料科学, 2023, 44(5): 30-38. |
[2] | 苏少锋, 孟子琪, 王超, 赵俊利, 郝宸昉, 赵启南. 基于线粒体DNA D-loop区序列分析中国及新西兰奶山羊遗传进化关系[J]. 畜牧与饲料科学, 2022, 43(3): 64-72. |
[3] | 闫鹏辉, 张君涛, 李娟娟, 贺来增, 赵英博, 张帆, 李怡屏, 张志平, 邓立新. VD在骨骼外系统中的作用及其研究进展[J]. 畜牧与饲料科学, 2021, 42(3): 43-46. |
[4] | 孙悦, 杨爽, 曾澳, 韩晓雅, 曹华, 王峥, 郑家三. 30例猫下泌尿道疾病临床诊断与治疗的分析[J]. 畜牧与饲料科学, 2020, 41(6): 111-115. |
[5] | 罗艳, 吴礼平, 白军, 孔学礼, 张洁. “互联网+”背景下小动物疾病防治课程改革探索[J]. 畜牧与饲料科学, 2020, 41(5): 124-128. |
[6] | 韦人月, 郑家三. 代谢组学技术在奶牛生产性疾病研究中的应用[J]. 畜牧与饲料科学, 2020, 41(1): 18-22. |
[7] | 李强, 庞玉娟, 武艺, 张焱如, 曹俊伟. 玻璃化冻存对蒙古驴卵母细胞甲基化及GFM1、MRPL15基因表达水平的影响[J]. 畜牧与饲料科学, 2019, 40(5): 10-15. |
[8] | 韩乌兰图雅,唐斯嘎,娜仁花,吴海青,刘永斌. 4种常见家畜子宫疾病的治疗与预防[J]. 畜牧与饲料科学, 2019, 40(1): 97-100. |
[9] | 李郁,孙裴,王希春,刘雪兰,李琳,徐前明,王菊花,魏建忠. 建设省级示范畜禽疾病检测实验实训中心的实践与思考[J]. 畜牧与饲料科学, 2018, 39(9): 85-87. |
[10] | 张传师,雍康,周乾兰. 重庆地区肉牛呼吸道疾病的发病原因及综合防治措施[J]. 畜牧与饲料科学, 2018, 39(4): 110-110. |
[11] | 王京仁,成钢,刘世勇,李淑红. 地方高校动物疾病学课程立体化教学资源的探索与构建[J]. 畜牧与饲料科学, 2018, 39(11): 72-74. |
[12] | 曹禹,刘明明,于仁冬,刘宇,周玉龙. 内蒙古某肉牛场呼吸道疾病病原的分离鉴定[J]. 畜牧与饲料科学, 2017, 38(8): 107-107. |
[13] | 宋魁,杨玉霞,吴荷群. 新疆蛋鸡常见疾病预防与控制研究[J]. 畜牧与饲料科学, 2017, 38(4): 109-109. |
[14] | 孙文高,钱峰. 仔猪保育期常见问题探析[J]. 畜牧与饲料科学, 2017, 38(12): 101-101. |
[15] | 杨斌,张帆,苏日娜,陈世昌,张月梅,宋越,达来宝力格,戴伶俐,王娜,宋爱军,陈伟,卢岩,孙衍立,赵世华. 多重连接探针扩增技术及其在疾病诊断中的应用[J]. 畜牧与饲料科学, 2017, 38(11): 20-20. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||