Animal Husbandry and Feed Science ›› 2023, Vol. 44 ›› Issue (5): 30-38.doi: 10.12160/j.issn.1672-5190.2023.05.005
• Basic Research • Previous Articles Next Articles
WANG Jingran1,LI Pengfei2,LIU Miao1,TAO Yanlin1,LIU Yanan1,ZHU Shufen3
Received:
2023-05-15
Online:
2023-09-30
Published:
2023-11-14
CLC Number:
WANG Jingran, LI Pengfei, LIU Miao, TAO Yanlin, LIU Yanan, ZHU Shufen. Advances in Respiratory Diseases and Respiratory Tract Micro-ecology[J]. Animal Husbandry and Feed Science, 2023, 44(5): 30-38.
[1] |
HUFFNAGLE G B, DICKSON R P, LUKACS N W. The respiratory tract microbiome and lung inflammation: A two-way street[J]. Mucosal Immunology, 2017, 10(2): 299-306.
doi: 10.1038/mi.2016.108 pmid: 27966551 |
[2] |
SAEEDI P, SALIMIAN J, AHMADI A, et al. The transient but not resident (TBNR) microbiome: A Yin Yang model for lung immune system[J]. Inhalation Toxicology, 2015, 27(10): 451-461.
doi: 10.3109/08958378.2015.1070220 pmid: 26307905 |
[3] |
ROOKS M G, GARRETT W S. Gut microbiota, metabolites and host immunity[J]. Nature Reviews Immunology, 2016, 16(6): 341-352.
doi: 10.1038/nri.2016.42 pmid: 27231050 |
[4] |
PATTARONI C, WATZENBOECK M L, SCHNEIDEGGER S, et al. Early-life formation of the microbial and immunological environment of the human airways[J]. Cell Host and Microbe, 2018, 24(6): 857-865.
doi: 10.1016/j.chom.2018.10.019 |
[5] |
YAGI K, HUFFNAGLE G B, LUKACS N W, et al. The lung microbiome during health and disease[J]. International Journal of Molecular Sciences, 2021, 22(19): 10872.
doi: 10.3390/ijms221910872 |
[6] |
HUANG W Y, LEE M S, LIN L M, et al. Diagnostic performance of the Sputum Gram Stain in predicting sputum culture results for critically ill pediatric patients with pneumonia[J]. Pediatrics and Neonatology, 2020, 61(4): 420-425.
doi: 10.1016/j.pedneo.2020.03.014 |
[7] |
GU W, MILLER S, CHIU C Y. Clinical metagenomic next-generation sequencing for pathogen detection[J]. Annual Review of Pathology, 2019, 14:319-338.
doi: 10.1146/annurev-pathmechdis-012418-012751 pmid: 30355154 |
[8] |
DITZ B, CHRISTENSON S, ROSSEN J, et al. Sputum microbiome profiling in COPD: Beyond singular pathogen detection[J]. Thorax, 2020, 75(4): 338-344.
doi: 10.1136/thoraxjnl-2019-214168 pmid: 31996401 |
[9] |
JOHNSON J S, SPAKOWICZ D J, HONG B Y, et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis[J]. Nature Communications, 2019, 10(1): 5029.
doi: 10.1038/s41467-019-13036-1 pmid: 31695033 |
[10] |
MÜLLER V, SOUSA J M, CEYLAN K H, et al. Identification of pathogenic bacteria in complex samples using a smartphone based fluorescence microscope[J]. RSC Advances, 2018, 8(64): 36493-36502.
doi: 10.1039/C8RA06473C |
[11] |
ROMBOUTS S, NOLLMANN M. RNA imaging in bacteria[J]. FEMS Microbiology Reviews, 2021, 45(2): fuaa051.
doi: 10.1093/femsre/fuaa051 |
[12] |
FRICKMANN H, ZAUTNER A E, MOTER A, et al. Fluorescence in situ hybridization (FISH) in the microbiological diagnostic routine laboratory:A review[J]. Critical Reviews in Microbiology, 2017, 43(3): 263-293.
doi: 10.3109/1040841X.2016.1169990 |
[13] |
ZHU H Y, ISIKMAN S O, MUDANYALI O, et al. Optical imaging techniques for point-of-care diagnostics[J]. Lab on a Chip, 2013, 13(1): 51-67.
doi: 10.1039/c2lc40864c pmid: 23044793 |
[14] |
MENEGHEL J, PASSOT S, JAMME F, et al. FTIR micro-spectroscopy using synchrotron-based and thermal source-based radiation for probing live bacteria[J]. Analytical and Bioanalytical Chemistry, 2020, 412(26): 7049-7061.
doi: 10.1007/s00216-020-02835-x pmid: 32839857 |
[15] |
ZARNOWIEC P, LECHOWICZ Ł, CZERWONKA G, et al. Fourier transform infrared spectroscopy (FTIR) as a tool for the identification and differentiation of pathogenic bacteria[J]. Current Medicinal Chemistry, 2015, 22(14): 1710-1718.
pmid: 25760086 |
[16] |
SHI H M, SUN J J, HAN R R, et al. The strategy for correcting interference from water in Fourier transform infrared spectrum based bacterial typing[J]. Talanta, 2020, 208:120347.
doi: 10.1016/j.talanta.2019.120347 |
[17] | QUINTELAS C, FERREIRA E C, LOPES J A, et al. An overview of the evolution of infrared spectroscopy applied to bacterial typing[J]. Biotechnology Journal, 2018, 13(1): 201700449. |
[18] |
MAITY J P, KAR S, LIN C M, et al. Identification and discrimination of bacteria using Fourier transform infrared spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013, 116:478-484.
doi: 10.1016/j.saa.2013.07.062 |
[19] |
GULIEV R R, SUNTSOVA A Y, VOSTRIKOVA T Y, et al. Discrimination of Staphylococcus aureus strains from coagulase-negative staphylococci and other pathogens by Fourier transform infrared spectroscopy[J]. Analytical Chemistry, 2020, 92(7): 4943-4948.
doi: 10.1021/acs.analchem.9b05050 |
[20] |
TYAGI D, MISHRA S K, ZOU B, et al. Nano-functionalized long-period fiber grating probe for disease-specific protein detection[J]. Journal of Materials Chemistry B, 2018, 6(3): 386-392.
doi: 10.1039/c7tb02406a pmid: 32254518 |
[21] |
SRINIVASAN R, UMESH S, MURALI S, et al. Bare fiber Bragg grating immunosensor for real-time detection of Escherichia coli bacteria[J]. Journal of Biophotonics, 2017, 10(2): 224-230.
doi: 10.1002/jbio.v10.2 |
[22] |
SRIVASTAVA S K, HAMO H B, KUSHMARO A, et al. Highly sensitive and specific detection of E. coli by a SERS nanobiosensor chip utilizing metallic nanosculptured thin films[J]. The Analyst, 2015, 140(9): 3201-3209.
doi: 10.1039/C5AN00209E |
[23] |
KAUSHIK S, TIWARI U K, PAL S S, et al. Rapid detection of Escherichia coli using fiber optic surface plasmon resonance immunosensor based on biofunctionalized molybdenum disulfide (MoS2) nanosheets[J]. Biosensors and Bioelectronics, 2019, 126:501-509.
doi: 10.1016/j.bios.2018.11.006 |
[24] |
CHARLSON E S, BITTINGER K, HAAS A R, et al. Topographical continuity of bacterial populations in the healthy human respiratory tract[J]. American Journal of Respiratory and Critical Care Medicine, 2011, 184(8): 957-963.
doi: 10.1164/rccm.201104-0655OC pmid: 21680950 |
[25] |
HILTY M, BURKE C, PEDRO H, et al. Disordered microbial communities in asthmatic airways[J]. PLoS One, 2010, 5(1): e8578.
doi: 10.1371/journal.pone.0008578 |
[26] |
ERB-DOWNWARD J R, THOMPSON D L, HAN M K, et al. Analysis of the lung microbiome in the healthy smoker and in COPD[J]. PLoS One, 2011, 6(2): e16384.
doi: 10.1371/journal.pone.0016384 |
[27] |
CHEN X Y, QIU C. Respiratory tract mucous membrane microecology and asthma[J]. Annals of Translational Medicine, 2019, 7(18): 495.
doi: 10.21037/atm.2019.09.06 pmid: 31700931 |
[28] |
HALDAR K, GEORGE L, WANG Z, et al. The sputum microbiome is distinct between COPD and health, independent of smoking history[J]. Respiratory Research, 2020, 21(1): 183.
doi: 10.1186/s12931-020-01448-3 pmid: 32664956 |
[29] |
MAMMEN M J, SETHI S. COPD and the microbiome[J]. Respirology, 2016, 21(4): 590-599.
doi: 10.1111/resp.12732 pmid: 26852737 |
[30] | The Global Initiative for Chronic Obstructive Lung Disease GOLD. Global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease 2022 report[R/OL].(2021-11-15)[2023-05-09]. https://goldcopd.org/wp-content/uploads/2021/12/GOLD-REPORT-2022-v1.1-22Nov2021_WMV.pdf. |
[31] |
RITCHIE A I, WEDZICHA J A. Definition, causes, pathogenesis, and consequences of chronic obstructive pulmonary disease exacerbations[J]. Clinics in Chest Medicine, 2020, 41(3): 421-438.
doi: S0272-5231(20)30040-X pmid: 32800196 |
[32] |
SZE M A, DIMITRIU P A, SUZUKI M, et al. Host response to the lung microbiome in chronic obstructive pulmonary disease[J]. American Journal of Respiratory and Critical Care Medicine, 2015, 192(4): 438-445.
doi: 10.1164/rccm.201502-0223OC pmid: 25945594 |
[33] |
SU L F, QIAO Y X, LUO J M, et al. Characteristics of the sputum microbiome in COPD exacerbations and correlations between clinical indices[J]. Journal of Translational Medicine, 2022, 20(1): 76.
doi: 10.1186/s12967-022-03278-x pmid: 35123490 |
[34] |
WANG J, CHAI J M, SUN L N, et al. The sputum microbiome associated with different sub-types of AECOPD in a Chinese cohort[J]. BMC Infectious Diseases, 2020, 20(1): 610.
doi: 10.1186/s12879-020-05313-y pmid: 32811432 |
[35] | SOCKRIDER M, FUSSNER L. What is asthma?[J]. American Journal of Respiratory and Critical Care Medicine, 2020, 202(9): 25-26. |
[36] |
HOLGATE S T, WENZEL S, POSTMA D S, et al. Asthma[J]. Nature Reviews Disease Primers, 2015, 1:15025.
doi: 10.1038/nrdp.2015.25 pmid: 27189668 |
[37] |
MARRI P R, STERN D A, WRIGHT A L, et al. Asthma-associated differences in microbial composition of induced sputum[J]. Journal of Allergy and Clinical Immunology, 2013, 131(2): 346-352.
doi: 10.1016/j.jaci.2012.11.013 |
[38] |
ABDEL-AZIZ M I, VIJVERBERG S J H, NEERINCX A H, et al. The crosstalk between microbiome and asthma:Exploring associations and challenges[J]. Clinical and Experimental Allergy, 2019, 49(8): 1067-1086.
doi: 10.1111/cea.v49.8 |
[39] | The Lancet. Lung cancer: Some progress, but still a lot more to do[J]. The Lancet, 2019, 394(10212): 1880. |
[40] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA:a Cancer Journal for Clinicians, 2021, 71(3): 209-249.
doi: 10.3322/caac.v71.3 |
[41] |
MAO Q X, JIANG F, YIN R, et al. Interplay between the lung microbiome and lung cancer[J]. Cancer Letters, 2018, 415:40-48.
doi: S0304-3835(17)30760-7 pmid: 29197615 |
[42] |
JIN J, GAN Y C, LIU H Y, et al. Diminishing microbiome richness and distinction in the lower respiratory tract of lung cancer patients: A multiple comparative study design with independent validation[J]. Lung Cancer, 2019, 136:129-135.
doi: S0169-5002(19)30623-3 pmid: 31494531 |
[43] |
LIU H X, TAO L L, ZHANG J, et al. Difference of lower airway microbiome in bilateral protected specimen brush between lung cancer patients with unilateral lobar masses and control subjects[J]. International Journal of Cancer, 2018, 142(4): 769-778.
doi: 10.1002/ijc.v142.4 |
[44] |
LEDERER D J, MARTINEZ F J. Idiopathic pulmonary fibrosis[J]. New England Journal of Medicine, 2018, 378(19): 1811-1823.
doi: 10.1056/NEJMra1705751 |
[45] |
GUENTHER A, KRAUSS E, TELLO S, et al. The European IPF registry (eurIPFreg):Baseline characteristics and survival of patients with idiopathic pulmonary fibrosis[J]. Respiratory Research, 2018, 19(1): 141.
doi: 10.1186/s12931-018-0845-5 |
[46] |
O′DWYER D N, ASHLEY S L, GURCZYNSKI S J, et al. Lung microbiota contribute to pulmonary inflammation and disease progression in pulmonary fibrosis[J]. American Journal of Respiratory and Critical Care Medicine, 2019, 199(9): 1127-1138.
doi: 10.1164/rccm.201809-1650OC pmid: 30789747 |
[47] |
INVERNIZZI R, WU B G, BARNETT J, et al. The respiratory microbiome in chronic hypersensitivity pneumonitis is distinct from that of idiopathic pulmonary fibrosis[J]. American Journal of Respiratory and Critical Care Medicine, 2021, 203(3): 339-347.
doi: 10.1164/rccm.202002-0460OC |
[48] |
NTOLIOS P, TZILAS V, BOUROS E, et al. The role of microbiome and virome in idiopathic pulmonary fibrosis[J]. Biomedicines, 2021, 9(4): 442.
doi: 10.3390/biomedicines9040442 |
[49] |
CASTELLANI C, ASSAEL B M. Cystic fibrosis: A clinical view[J]. Cellular and Molecular Life Sciences, 2017, 74(1): 129-140.
doi: 10.1007/s00018-016-2393-9 pmid: 27709245 |
[50] |
MUHLEBACH M S, ZORN B T, ESTHER C R, et al. Initial acquisition and succession of the cystic fibrosis lung microbiome is associated with disease progression in infants and preschool children[J]. PLoS Pathogens, 2018, 14(1): e1006798.
doi: 10.1371/journal.ppat.1006798 |
[51] |
CUTHBERTSON L, WALKER A W, OLIVER A E, et al. Lung function and microbiota diversity in cystic fibrosis[J]. Microbiome, 2020, 8(1): 45.
doi: 10.1186/s40168-020-00810-3 pmid: 32238195 |
[52] |
HURLEY M N, AMIN ARIFF A H, BERTENSHAW C, et al. Results of antibiotic susceptibility testing do not influence clinical outcome in children with cystic fibrosis[J]. Journal of Cystic Fibrosis, 2012, 11(4): 288-292.
doi: 10.1016/j.jcf.2012.02.006 pmid: 22436723 |
[53] |
FLUME P A, CHALMERS J D, OLIVIER K N. Advances in bronchiectasis:Endotyping, genetics, microbiome, and disease heterogeneity[J]. The Lancet, 2018, 392(10150): 880-890.
doi: 10.1016/S0140-6736(18)31767-7 |
[54] |
CHALMERS J D, CHANG A B, CHOTIRMALL S H, et al. Bronchiectasis[J]. Nature Reviews Disease Primers, 2018, 4:45.
doi: 10.1038/s41572-018-0042-3 pmid: 30442957 |
[55] |
AMATI F, SIMONETTA E, GRAMEGNA A, et al. The biology of pulmonary exacerbations in bronchiectasis[J]. European Respiratory Review, 2019, 28(154): 190055.
doi: 10.1183/16000617.0055-2019 |
[56] |
ROGERS G B, VAN DER GAST C J, CUTHBERTSON L, et al. Clinical measures of disease in adult non-CF bronchiectasis correlate with airway microbiota composition[J]. Thorax, 2013, 68(8): 731-737.
doi: 10.1136/thoraxjnl-2012-203105 pmid: 23564400 |
[57] |
LEE S H, LEE Y, PARK J S, et al. Characterization of microbiota in bronchiectasis patients with different disease severities[J]. Journal of Clinical Medicine, 2018, 7(11): 429.
doi: 10.3390/jcm7110429 |
[58] |
NAIDOO C C, NYAWO G R, WU B G, et al. The microbiome and tuberculosis: State of the art, potential applications, and defining the clinical research agenda[J]. The Lancet Respiratory Medicine, 2019, 7(10): 892-906.
doi: 10.1016/S2213-2600(18)30501-0 |
[59] |
HU Y F, KANG Y, LIU X, et al. Distinct lung microbial community states in patients with pulmonary tuberculosis[J]. Science China Life Sciences, 2020, 63(10): 1522-1533.
doi: 10.1007/s11427-019-1614-0 |
[60] |
HU Y F, CHENG M, LIU B, et al. Metagenomic analysis of the lung microbiome in pulmonary tuberculosis - A pilot study[J]. Emerging Microbes and Infections, 2020, 9(1): 1444-1452.
doi: 10.1080/22221751.2020.1783188 |
[61] |
HARPER A, VIJAYAKUMAR V, OUWEHAND A C, et al. Viral infections, the microbiome, and probiotics[J]. Frontiers in Cellular and Infection Microbiology, 2021, 10:596166.
doi: 10.3389/fcimb.2020.596166 |
[62] | LI C X, LIU H Y, LIN Y X, et al. The gut microbiota and respiratory diseases: New evidence[J]. Journal of Immunology Research, 2020, 2020:2340670. |
[63] | SHI C Y, YU C H, YU W Y, et al. Gut-lung microbiota in chronic pulmonary diseases: Evolution, pathogenesis, and therapeutics[J]. Canadian Journal of Infectious Diseases and Medical Microbiology, 2021, 2021:1-8. |
[64] |
JAMALKANDI S A, AHMADI A, AHRARI I, et al. Oral and nasal probiotic administration for the prevention and alleviation of allergic diseases, asthma and chronic obstructive pulmonary disease[J]. Nutrition Research Reviews, 2021, 34(1): 1-16.
doi: 10.1017/S0954422420000116 |
[65] |
PEI C X, WU Y C, WANG X M, et al. Effect of probiotics, prebiotics and synbiotics for chronic bronchitis or chronic obstructive pulmonary disease:A protocol for systematic review and meta-analysis[J]. Medicine, 2020, 99(45): e23045.
doi: 10.1097/MD.0000000000023045 |
[1] | . Isolation and Identification of the Etiological Agents Associated with the Bovine Respiratory Disease in a Beef Cattle Farm in Inner Mongolia [J]. Animal Husbandry and Feed Science, 2017, 38(8): 107-107. |
[2] | . Diagnosis and Treatment of Respiratory Diseases in Cranes [J]. Animal Husbandry and Feed Science, 2012, 33(7): 114-114. |
[3] | . Healing Effect of Rifampicin,Amikacin and Combination of Penicillin and Streptomycin on Porcine Respiratory Diseases [J]. Animal Husbandry and Feed Science, 2010, 31(3): 130-130. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||