北方农业学报 ›› 2009, Vol. ›› Issue (1): 26-26.
• 试验研究 • 上一篇 下一篇
刘婧然 马英杰 杨武建 申祥民
出版日期:
发布日期:
通讯作者:
作者简介:
基金资助:
LIU Jing-ran (Xinjiang Agricultural college water conservation and civil engineering institute,Urumqi 830052,China)
Online:
Published:
摘要: 文章采用径向基函数人工神经网络的方法,利用MATLAB工具箱并结合气象资料中的平均气温、最低气温、日照时间和降雨量.建立了预测虫害发生程度的RBF神经网络预测系统。系统通过实例证实了预测的准确性,并且与常用的BP网络进行了比较。RBF网络和BP网络通过对训练样本的仿真,可明显看出RBF网络比BP网络更为精确。通过程序记时显示RBF网络用时1.2030s.比BP网络训练所需的时间要短的多.因此RBF神经网络具有很好的实用价值。
Abstract: Using the method of Radial- Basis Function artificial neural networks and MATLAB toolbox combined with the meteorological data of the average temperature, the sunshine hours, the rainfall amount, the article has established the RBF neural network system to forecast the degree of pest occurrence in Xinjiang Shihezi areas. We has confirmed the forecast accuracy of the system through the examples, and made comparison between the RBF network and the commonly used BP network in which tile training sample simulation of the two has revealed the RBF network is obviously more precise than the BP network. To time the procedure shows the training time of RBF network is 1.2030s which is much shorter than BP training needed,Therefore the RBF neural network has a very promising application value.
中图分类号:
刘婧然 马英杰 杨武建 申祥民. 预测水稻螟虫发生趋势的径向基函数人工神经网络模型及其与BP网络的比较[J]. 北方农业学报, 2009, (1): 26-26.
0 / / 推荐
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文: https://journal30.magtechjournal.com/bfnyxb/CN/
https://journal30.magtechjournal.com/bfnyxb/CN/Y2009/V/I1/26
Cited