北方农业学报 ›› 2017, Vol. 45 ›› Issue (3): 108-108.

• 农业信息技术·农业经济 • 上一篇    下一篇

基于SAR-C的大兴安岭西麓地区主要农作物识别方法研究

于利峰[1];乌兰吐雅[1];乌兰[1];包珺玮[1]   

  1. [1]内蒙古农牧业科学院农业经济与信息研究所,内蒙古呼和浩特010031
  • 出版日期:2017-06-20 发布日期:2017-06-20
  • 通讯作者: 于利峰
  • 作者简介:于利峰(1994—),男,学士,研究方向为农业遥感与研究。;通讯作者:乌兰吐雅(1970—),女,副研究员,博士,主要从事遥感与GIS应用工作。
  • 基金资助:
    内蒙古农牧业科学院创新基金项目(2015CXJJN05);内蒙古自然科学基金项目(2016MS(LH)0301)。

Study on the main crop identification method based on SAR-C in the west of Great Khingan Mountains

  • Online:2017-06-20 Published:2017-06-20

摘要: 雷达遥感能够克服复杂地形与气象条件影响,既可在恶劣的气候条件下,也可以在白天和黑夜发挥作用,具有较强的全天候、全天时的工作能力,这一特性优于可见光和红外波段的探测系统。大兴安岭地区,夏季多云,光学影像难以获取,对于遥感农作物识别造成了影响。该研究选取大兴安岭西麓部分地区为研究区域,以单极化多时相Sentienl-1A为数据源,采用最大似然法、CART决策树方法对研究作物种类进行提取,并对其结果进行了分析。通过分类结果数据比对,表明:在农作物识别中CART决策树分类方法能够提供较高的分类精度,作物识别精度达到80.257%,Kappa系数0.733。光学影像能够很好辅助雷达影像用于区分非耕地信息。SAR数据对大兴安岭西麓地区春小麦具有很好地识别效果。

Abstract: Radar remote sensing can overcome the complex terrain and weather conditions,not only during severe weather conditions,but also can play a role in day and night,with a strong ability to work round-the-clock,all-weather.This feature is better than visible light and infrared detection system.In Great Khingan Mountains with cloudy summers,the optical image is difficult to obtain,affecting farming recognition in remote sensing.Selected parts of the Great Khingan Mountains west of the study area and single-polarization and multi-temporal Sentienl-1A for the data source,using maximum likelihood methods and CART decision trees,crop types were extracted to study and analyze its results.Data by classification,the results as follows:CART decision tree in crop identification classification method can provide a high classification accuracy;crop identification accuracy was 80.257%and Kappa coefficient was 0.733.Optical imaging can be a good secondary radar images which are used to distinguish non-arable land information.SAR data had good identify effect to the Great Khingan Mountains west of spring-wheat.

中图分类号: 

  • TP79