[1] |
张伏, 张朝臣, 陈自均, 等. 光谱检测技术在种子质量检测中的应用[J]. 中国农机化学报, 2021, 42(2):109-114.
doi: 10.13733/j.jcam.issn.2095-5553.2021.02.016
|
[2] |
杨小倩, 郅慧, 张辉, 等. 玉米不同部位化学成分、药理作用、利用现状研究进展[J]. 吉林中医药, 2019, 39(6):837-840.
|
[3] |
周迎鑫, 李玥峤, 吕庆雪, 等. 玉米子粒主要营养成分合成调控研究进展[J]. 玉米科学, 2023, 31(2):59-66.
|
[4] |
REN X G, TIAN H Q, ZHAO K, et al. Research on pH value detection method during maize silage secondary fermentation based on computer vision[J]. Agriculture, 2022, 12(10):1623.
doi: 10.3390/agriculture12101623
|
[5] |
KANG Z, HUANG T C, ZENG S, et al. A method for detection of corn kernel mildew based on co-clustering algorithm with hyperspectral image technology[J]. Sensors, 2022, 22(14):5333.
doi: 10.3390/s22145333
|
[6] |
程锦锋, 方贵盛, 高惠芳. 表面缺陷检测的机器视觉技术研究进展[J]. 计算机应用研究, 2023, 40(4):967-977.
|
[7] |
王建伟, 陶飞, 郭双欢, 等. 近红外光谱技术在食品安全检测中的应用进展[J]. 食品工业, 2021, 42(12):461-464.
|
[8] |
MISHRA G, PANDA B K, RAMIREZ W A, et al. Research advancements in optical imaging and spectroscopic techniques for nondestructive detection of mold infection and mycotoxins in cereal grains and nuts[J]. Comprehensive Reviews in Food Science and Food Safety, 2021, 20(5):4612-4651.
doi: 10.1111/1541-4337.12801
pmid: 34338431
|
[9] |
TU K L, WEN S Z, CHENG Y, et al. A non-destructive and highly efficient model for detecting the genuineness of maize variety“INGKE 968” using machine vision combined with deep learning[J]. Computers and Electronics in Agriculture, 2021, 182:106002.
doi: 10.1016/j.compag.2021.106002
|
[10] |
ALTUNTA Y, CÖMERT Z, KOCAMAZ A F. Identification of haploid and diploid maize seeds using convolutional neural networks and a transfer learning approach[J]. Computers and Electronics in Agriculture, 2019, 163:104874.
doi: 10.1016/j.compag.2019.104874
|
[11] |
冯晓, 张辉, 周蕊, 等. 基于深度学习和籽粒双面特征的玉米品种识别[J]. 系统仿真学报, 2021, 33(12):2983-2991.
doi: 10.16182/j.issn1004731x.joss.21-FZ0771
|
[12] |
FAN Y M, MA S C, WU T T. Individual wheat kernels vigor assessment based on NIR spectroscopy coupled with machine learning methodologies[J]. Infrared Physics and Technology, 2020, 105:103213.
doi: 10.1016/j.infrared.2020.103213
|
[13] |
熊春晖, 佘永新, 焦逊, 等. 高光谱成像技术在农产品无损检测中的应用[J]. 粮油食品科技, 2023, 31(1):109-122.
|
[14] |
RIEFOLO C, ANTELMI I, CASTRIGNANO A, et al. Assessment of the hyperspectral data analysis as a tool to diagnose Xylella fastidiosa in the asymptomatic leaves of olive plants[J]. Plants, 2021, 10(4):683.
doi: 10.3390/plants10040683
|
[15] |
MANGANIELLO G, NICASTRO N, CAPUTO M, et al. Functional hyperspectral imaging by high-related vegetation indices to track the wide-spectrum Trichoderma biocontrol activity against soil-borne diseases of baby-leaf vegetables[J]. Frontiers in Plant Science, 2021, 12:630059.
doi: 10.3389/fpls.2021.630059
|
[16] |
张瀚文, 李野, 江晟, 等. 近红外高光谱大米典型特征提取分类识别[J]. 吉林大学学报(理学版), 2022, 60(3):655-663.
|
[17] |
黄锋华, 燕红文, 苗荣慧. 高光谱技术结合GLCM的油桃品种判别研究[J]. 农业技术与装备, 2021(12):5-7.
|
[18] |
郑守国, 翁士状, 刘瑜凡, 等. 融合高光谱成像多类特征的名优牛肉种类鉴别[J]. 激光杂志, 2021, 42(8):57-61.
|
[19] |
李士静, 潘羲, 陈熙卓, 等. 基于高光谱信息的烟叶分级方法比较[J]. 烟草科技, 2021, 54(10):82-91.
|
[20] |
郭榛, 金诚谦, 刘鹏. 光谱分析和光谱成像技术检测大豆品质的研究进展[J]. 大豆科学, 2022, 41(1):99-106.
|
[21] |
GOETZ A F H, VANE G, SOLOMON J E, et al. Imaging spectrometry for earth remote sensing[J]. Science, 1985, 228(4704):1147-1153.
doi: 10.1126/science.228.4704.1147
pmid: 17735325
|
[22] |
王建宇, 李春来. 高光谱遥感成像技术的发展与展望[J]. 空间科学学报, 2021, 41(1):22-33.
|
[23] |
崔莹莹, 杨铭铎, 方伟佳, 等. 高光谱成像技术在红肉食用品质检测中的应用研究进展[J]. 肉类研究, 2019, 33(6):70-76.
|
[24] |
孙建非. 基于高光谱成像技术的花生多项品质参数无损检测方法的研究[D]. 淄博: 山东理工大学, 2020.
|
[25] |
ARIANA D P, LU R. Quality evaluation of pickling cucumbers using hyperspectral reflectance and transmittance imaging:Part Ⅰ. Development of a prototype[J]. Sensing and Instrumentation for Food Quality and Safety, 2008, 2:144-151.
doi: 10.1007/s11694-008-9057-x
|
[26] |
刘欢, 王雅倩, 王晓明, 等. 基于近红外高光谱成像技术的小麦不完善粒检测方法研究[J]. 光谱学与光谱分析, 2019, 39(1):223-229.
|
[27] |
吴永清, 李明, 张波, 等. 高光谱成像技术在谷物品质检测中的应用进展[J]. 中国粮油学报, 2021, 36(5):165-173.
|
[28] |
李伟, 赵雪晴, 刘强. 基于高光谱图像光谱变量和颜色特征的霉变玉米籽粒识别[J]. 食品与机械, 2022, 38(12):112-120.
|
[29] |
孙慧婷, 方晓, 徐辉. 基于图像形状特征和纹理的中药材牡丹皮规格分类研究[J]. 黑龙江工程学院学报, 2019, 33(4):40-45.
|
[30] |
刘煊. 不同噪声条件下的高光谱图像特征提取与分类的研究与应用[D]. 开封: 河南大学, 2022.
|
[31] |
孙红敏, 董元, 李晓明, 等. 基于高光谱的小米产地溯源策略与模型研究[J]. 东北农业大学学报, 2021, 52(7):79-88.
|
[32] |
王靖会, 程娇娇, 刘洋, 等. 基于高光谱成像技术鉴别大米品种[J]. 中国农业科技导报, 2021, 23(9):121-128.
|
[33] |
白宗秀, 朱荣光, 王世昌, 等. 高光谱图像结合特征变量筛选定量检测羊肉中狐狸肉掺假[J]. 农业工程学报, 2021, 37(17):276-284.
|
[34] |
刘燕德, 李茂鹏, 胡军, 等. 近红外高光谱的脐橙粒化检测研究[J]. 光谱学与光谱分析, 2022, 42(5):1366-1371.
|
[35] |
ZHAO J L, FANG Y, CHU G M, et al. Identification of leaf-scale wheat powdery mildew (Blumeria graminis f. sp. tritici) combining hyperspectral imaging and an SVM classifier[J]. Plants, 2020, 9(8):936.
doi: 10.3390/plants9080936
|
[36] |
GARRIGA M, ROMERO-BRAVO S, ESTRADA F, et al. Estimating carbon isotope discrimination and grain yield of bread wheat grown under water-limited and full irrigation conditions by hyperspectral canopy reflectance and multilinear regression analysis[J]. International Journal of Remote Sensing, 2021, 42(8):2848-2871.
doi: 10.1080/01431161.2020.1854888
|
[37] |
刘金秀, 贺小伟, 罗华平, 等. 基于高光谱成像技术的小白杏成熟度判别模型[J]. 食品研究与开发, 2022, 43(15):158-165.
|
[38] |
WAKHOLI C, KANDPAL L M, LEE H, et al. Rapid assessment of corn seed viability using short wave infrared line-scan hyperspectral imaging and chemometrics[J]. Sensors and Actuators B:Chemical, 2018, 255:498-507.
doi: 10.1016/j.snb.2017.08.036
|
[39] |
王亚丽, 彭彦昆, 赵鑫龙, 等. 玉米种子活力逐粒无损检测与分级装置研究[J]. 农业机械学报, 2020, 51(2):350-356.
|
[40] |
FENG L, ZHU S S, ZHANG C, et al. Identification of maize kernel vigor under different accelerated aging times using hyperspectral imaging[J]. Molecules, 2018, 23(12):3078.
doi: 10.3390/molecules23123078
|
[41] |
ZHANG L, ZHANG Q, WU J, et al. Moisture detection of single corn seed based on hyperspectral imaging and deep learning[J]. Infrared Physics and Technology, 2022, 125:104279.
doi: 10.1016/j.infrared.2022.104279
|
[42] |
WANG C P, HUANG W Q, FAN S X, et al. Moisture content detection of maize kernels based on hyperspectral imaging technology and CARS[J]. Laser and Optoelectronics Progress, 2016, 53(12):123001.
doi: 10.3788/LOP
|
[43] |
廉孟茹, 张淑娟, 任锐, 等. 基于高光谱技术的鲜食水果玉米含水率无损检测[J]. 食品与机械, 2021, 37(9):127-132.
|
[44] |
KIMULI D, WANG W, WANG W, et al. Application of SWIR hyperspectral imaging and chemometrics for identification of aflatoxin B1 contaminated maize kernels[J]. Infrared Physics and Technology, 2018, 89:351-362.
doi: 10.1016/j.infrared.2018.01.026
|
[45] |
YANG D, YUAN J H, CHANG Q, et al. Early determination of mildew status in storage maize kernels using hyperspectral imaging combined with the stacked sparse auto-encoder algorithm[J]. Infrared Physics and Technology, 2020, 109:103412.
doi: 10.1016/j.infrared.2020.103412
|
[46] |
SHEN F, HUANG Y, JIANG X S, et al. On-line prediction of hazardous fungal contamination in stored maize by integrating Vis/NIR spectroscopy and computer vision[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2020, 229:118012.
doi: 10.1016/j.saa.2019.118012
|
[47] |
DA CONCEICÃO R R P, SIMEONE M L F, QUEIROZ V A V, et al. Application of near-infrared hyperspectral (NIR) images combined with multivariate image analysis in the differentiation of two mycotoxicogenic Fusarium species associated with maize[J]. Food Chemistry, 2021, 344:128615.
doi: 10.1016/j.foodchem.2020.128615
|
[48] |
康孝存, 沈广辉, 徐剑宏, 等. 玉米中伏马毒素B污染高光谱快速检测模型研究[J]. 中国粮油学报, 2023, 38(8):41-48.
|
[49] |
ZHANG J, DAI L M, CHENG F. Classification of frozen corn seeds using hyperspectral VIS/NIR reflectance imaging[J]. Molecules, 2019, 24(1):149.
doi: 10.3390/molecules24010149
|
[50] |
WANG Y L, PENG Y K, ZHUANG Q B, et al. Feasibility analysis of NIR for detecting sweet corn seeds vigor[J]. Journal of Cereal Science, 2020, 93:102977.
doi: 10.1016/j.jcs.2020.102977
|
[51] |
ZHOU Q, HUANG W, TIAN X, et al. Identification of the variety of maize seeds based on hyperspectral images coupled with convolutional neural networks and subregional voting[J]. Journal of the Science of Food and Agriculture, 2021, 101(11):4532-4542.
doi: 10.1002/jsfa.11095
pmid: 33452811
|
[52] |
王庆国, 黄敏, 朱启兵, 等. 基于高光谱图像的玉米种子产地与年份鉴别[J]. 食品与生物技术学报, 2014, 33(2):163-170.
|