畜牧与饲料科学 ›› 2021, Vol. 42 ›› Issue (4): 89-97.doi: 10.12160/j.issn.1672-5190.2021.04.016
晔薷罕1,2, 萨茹拉其其格3, 温超1, 伊风艳1, 张璞进1, 木兰1, 单玉梅1
收稿日期:
2021-02-05
出版日期:
2021-07-30
发布日期:
2021-08-25
通讯作者:
单玉梅(1980—),女,副研究员,博士,主要从事荒漠草原生态结构与功能研究工作。
作者简介:
晔薷罕(1981—),女,副研究员,硕士,主要从事草地生态系统利用与保护研究工作。
基金资助:
Yeruhan1,2, Sarulaqiqige3, WEN Chao1, YI Feng-yan1, ZHANG Pu-jin1, Mulan1, SHAN Yu-mei1
Received:
2021-02-05
Online:
2021-07-30
Published:
2021-08-25
摘要: 草地生态系统对我国建设生态文明、提供生态系统服务、保障食品安全和维护边疆稳定有举足轻重的作用。全球气候变化和过度的人为干扰打破了草地生态系统原有的平衡及稳定性,造成草地退化、沙化和盐渍化现象严重。草地生态系统结构、功能与过程的稳定是保证草地生态系统稳定的基础。凋落物分解过程是草地物质循环的重要环节,对维持草地生态系统稳定性具有重要作用。草地生态系统凋落物分解对降水格局变化、大气氮沉降增加及放牧干扰的响应已有较多的研究。对目前国内外相关研究进行了梳理和总结,发现降水、氮沉降和放牧对草地生态系统凋落物分解的影响,因地理位置和气候变化以及草地类型的异质性而不同,也有针对同一地区开展的研究呈现不同结果的现象。目前对这三种干扰因素中的两因素或三因素交互作用对草地生态系统凋落物分解过程的影响研究较少,而研究气候变化及人为干扰对草地生态系统凋落物的影响对正确理解草地生态系统结构与功能,以及可持续利用与保护草地生态系统具有重要的意义。
中图分类号:
晔薷罕, 萨茹拉其其格, 温超, 伊风艳, 张璞进, 木兰, 单玉梅. 降水、氮沉降及放牧对草地生态系统凋落物分解的影响研究进展[J]. 畜牧与饲料科学, 2021, 42(4): 89-97.
Yeruhan, Sarulaqiqige, WEN Chao, YI Feng-yan, ZHANG Pu-jin, Mulan, SHAN Yu-mei. Research Advances on the Effects of Precipitation, Nitrogen Deposition and Grazing on Litter Decomposition in Grassland Ecosystem[J]. Animal Husbandry and Feed Science, 2021, 42(4): 89-97.
[1] 侯向阳. 中国草原科学[M].北京:科学出版社,2013:5. [2] LORANGER G,PONGE J F,IMBERT D,et al.Leaf decomposition in two semi evergreen tropical forests:influence of litter quality[J].Biology and Fertility Soils,2002,35:247-252. [3] 韩兴国,李凌浩,黄建辉.生物地球化学概论[M].北京:高等教育出版社,1999. [4] Intergovernmental Panel on Climate Change. Climate change 2014:synthesis report. Contribution of working groupsⅠ,Ⅱand Ⅲ to the fifth assessment report of the Intergovernmental Panel on Climate Change[R]. Geneva,Switzerland:Intergovernmental Panel on Climate Change,2014:151. [5] WELTZIN J F,LOIKM E,SCHWIINING S.Assessing the response of terrestrial ecosystems to potential changes in precipitation[J].BioScience,2003,53(10):941-952. [6] 张新时. 草地的生态经济功能及其范式[J].科技导报,2000(8):3-7. [7] HODGSON J.Grazing Management:Science into Practice[M].New York:Longman Scientific and Technical,1990:1-2. [8] BARDGETT R D,MANNING P,MORRIEN E,et al.Hierarchical responses of plant-soil interactions to climate change:consequences for the global carbon cycle[J].Journal of Ecology,2013,101(2):334-343. [9] KARDOL P,CAMPANY C E,SOUZA L,et al.Climate change effects on plant biomass alter dominance patterns and community evenness in an experimental old-field ecosystem[J].Global Change Biology,2010,16(10):2676-2687. [10] YANG H J,WU M Y,LIU W X,et al.Community structure and composition in response to climate change in a temperate steppe[J].Global Change Biology,2011,17(1):452-465. [11] SUSEELA V,THARAYIL N.Decoupling the direct and indirect effects of climate on plant litter decomposition: Accounting for stress-induced modifications in plant chemistry[J].Global Change Biology,2018,24(4):1428-1451. [12] EPSTEIN H E,BURKE I C,LAUENROTH W K.Regional patterns of decomposition and primary production rates in the US Great Plains[J].Ecology,2002,83(2):320-327. [13] BRANDT L A,KING J Y,MILCHUNAS D G.Effects of ultra violet radiation on litter decomposition depend on precipitation and litter chemistry in a short grass steppe ecosystem[J].Global Change Biology,2007,13(10):2193-2205. [14] GARCIA P J,CASALS P,ROMANY F J.Litter decomposition and faunal activity in Mediteranean forest soils:Effects of N content and the moss layer[J].Soil Biology and Biochemistry,2004,36(6):989-997. [15] HUANG Q,HUANG C D.Effect of reduced rainfall on evergreen Huang broad leaved forest litter decomposition and nutrient release, rainy area of west China[J].Sichuan Forestry Exploration and Design,2015(4):8-13. [16] AUSTIN A T.Has water limited our imagination for aridland biogeochemistry?[J].Trends in Ecology and Evolution,2011,26(5):229-235. [17] JOLY F X,KURUPAS K L,THROOP H L.Pulse frequency and soil-litter mixing alter the control of cumulative precipitation over litter decomposition[J].Ecology,2017,98(9):2255-2260. [18] BAI Y F,WU J G,XING Q,et al.Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau[J].Ecology,2008,89(8):2140-2153. [19] KNAPP A K,BEIER C,BRISKE D D,et al.Consequences of more extreme precipitation regimes for terrestrial ecosystems[J].BioScience,2008,58(9):811-821. [20] JORDAN S E,PALMQUIST K A,BRADFORD J B,et al.Soil water availability shapes species richness in midlatitude shrub steppe plant communities[J].Journal of Vegetation Science,2020,31(4):646-657. [21] CORNELISSEN J H C,VAN BODEGOM P M,AERTS R,et al. Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes[J]. Ecology Letters,2007,10(7):619-627. [22] YANG H,AUERSWALD K,BAI Y F,et al.Complementarity in water sources among dominant species in typical steppe ecosystems of Inner Mongolia,China[J].Plant and Soil,2011,340:303-313. [23] LIU Y S,PAN Q M,ZHENG S X,et al.Intra-seasonal precipitation amount and pattern differentially affect primary production of two dominant species of Inner Mongolia grassland[J].Acta Oecologica,2012,44:2-10. [24] MAEDA H A.Lignin biosynthesis:Tyrosine shortcut in grasses[J].Nature Plants,2016,2(6):16080. [25] VANHOLME R,STORME V,VANHOLME B,et al.A systems biology view of responses to lignin biosynthesis perturbations in [26] SUSEELA V,THARAYIL N,XING B,et al.Warming and drought differentially influence the production and resorption of elemental and metabolic nitrogen pools in [27] MUDGE P L,KELLIHER F M,KNIGHT T L,et al.Irrigating grazed pasture decreases soil carbon and nitrogen stocks[J].Global Change Biology,2017,23(2):945-954. [28] CHEN Q Y,NIU B,HU Y L,et al.Warming and increased precipitation indirectly affect the composition and turnover of labile-fraction soil organic matter by directly affecting vegetation and microorganisms[J].Science of the Total Environment,2020,714(20):136787. [29] GALLOWAY J N,TOWNSEND A R,ERISMAN J W,et al.Transformation of the nitrogen cycle:recent trends,questions and potential solutions[J].Science,2008,320(5878):889-892. [30] XU W,LUO X S,PAN Y P,et al.Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China[J].Atmospheric Chemistry and Physics,2015,15(21):12345-12360. [31] STEVENS C,DUPRÈ C,GAUDNIK C,et al.Changes in species composition of European acid grasslands observed a long a gradient of nitrogen deposition[J].Journal of Vegetation Science,2015,22(2):207-215. [32] CARDINALE B J,DUFFY J E,GONZALEZ A,et al.Biodiversity loss and its impact on humanity[J].Nature,2012,486(7401):59-67. [33] WANG X,XU Z W,LV X T,et al.Responses of litter decomposition and nutrient release rate to water and nitrogen addition differed among three plant species dominated in a semi-arid grassland[J].Plant and Soil,2017,418(1/2):241-254. [34] KNORR M,FREY S D,CURTIS P S.Nitrogen additions and litter decomposition:A meta-analysis[J].Ecology,2005,86(12):3252-3257. [35] BRADFORD M A,BJÖRN B,MAYNARD D S,et al. Understanding the dominant controls on litter decomposition[J]. Journal of Ecology,2016,104(1):229-238. [36] STEVENS C J,DISE N B,MOUNTFORD J O,et al.Impact of nitrogen deposition on the species richness of grasslands[J]. Science,2004,303(5665):1876-1879. [37] BAI Y F,WU J G,CLARK C M,et al.Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning:Evidence from Inner Mongolia Grasslands[J].Global Change Biology,2010,16(1):358-372. [38] 祁瑜,黄永梅,王艳,等.施氮对几种草地植物生物量及其分配的影响[J].生态学报,2011,31(18):5122-5128. [39] 段娜,李清河,多普增,等.植物响应大气氮沉降研究进展[J].世界林业研究,2019,32(4):6-11. [40] FISHER F M,ZAK J C,CUNNINGHAM G L,et al.Water and nitrogen effects on growth and allocation patterns of creosotebush in the northern Chihuahuan Desert[J].Journal of Range Management,1988,41(5):387-391. [41] HOBBIE S E,EDDY W C,BUYARSKI C R,et al.Response of decomposing litter and its microbial community to multipleorms of nitrogen enrichment[J].Ecological Monographs,2012,82(3):389-405. [42] HE K J,QI Y,HUANG Y M,et al.Response of aboveground biomass and diversity on nitrogen addition-a five-year experiment in semi-arid grassland of Inner Mongolia,China[J].Scientific Reports,2016,6:31919. [43] LI S,DU Y,GUO P,et al.Effects of different types of N deposition on the fungal decomposition activities of temperate forest soils[J].Science of the Total Environment,2014(497/498):91-96. [44] HENRY H A L,MOISE E R D. Grass litter responses to warming and N addition:Temporal variation in the contributions of litter quality and environmental effect to decomposition[J].Plant and Soil,2014,389(1/2):35-43. [45] DONG L L,BERG B,SUN T,et al.Response of fine root decomposition to different forms of N deposition in a temperate grassland[J].Soil Biology and Biochemistry,2020(147):147845. [46] FREEDMAN Z B,UPCHURCH R A,ZAK D R,et al.Anthropogenic N deposition slows decay by favoring bacterial metabolism:insights from meta genomic analyses[J]. Frontiers in Microbiology,2016,7:259. [47] AERTS R,CALUWE H D,BELTMAN B.Plant community mediated vs. nutritional controls on litter decomposition rates in grasslands[J].Ecology,2003,84(12):3198-3212. [48] HOBBIE S E.Plant species effects on nutrient cycling:Revisiting litter feed backs[J].Trends in Ecology and Evolution,2015,30(6):357-363. [49] 杨玉盛,陈光水,郭剑芬,等.杉木观光木混交林凋落物分解及养分释放的研究[J].植物生态学报,2002,26(3):275-282. [50] REN Z W,LI Q,CHU C J,et al.Effects of resource additions on species richness and ANPP in an alpine meadow community[J].Journal of Plant Ecology,2010,3(1):25-31. [51] 张杰琦,李奇,任正炜,等.氮素添加对青藏高原高寒草甸植物群落物种丰富度及其与地上生产力关系的影响[J]. 植物生态学报,2010,34(10):1125-1131. [52] HOU S L,FRESCHET G T,YANG J J,et al.Quantifying the indirect effects of nitrogen deposition on grassland litter chemical traits[J].Biogeochemistry,2018,139:261-273. [53] 李英滨,李琪,杨俊杰,等.模拟氮沉降对温带草原凋落物质量的影响[J].生态学杂志,2016,35(10):2732-2737. [54] 陈汉章,刘志中.氮添加对马尾松人工林凋落物分解及其微生物活性的影响[J].水土保持研究,2020,27(1):73-80. [55] 娜日格乐,盛芝露,和克俭,等.氮添加对内蒙古温带草原优势物种凋落物分解的影响[J].北京师范大学学报(自然科学版),2018,54(5):674-681. [56] 霍利霞,红梅,赵巴音那木拉,等.水氮控制对荒漠草原凋落物分解的影响[J].草地学报,2018,40(5):57-63. [57] 崔夺. 氮素和水分添加对典型沙地优势植物凋落物分解的影响[D].北京:中国科学院大学,2012. [58] 黄菊莹,赖荣生,余海龙,等.N添加对宁夏荒漠草原植物和土壤C∶N∶P生态化学计量特征的影响[J].生态学杂志,2013,32(11):2850-2856. [59] 安卓,牛得草,文海燕,等.氮素添加对黄土高原典型草原长芒草氮磷重吸收率及C∶N∶P化学计量特征的影响[J].植物生态学报,2011,35(8):801-807. [60] TRESEDER K K.Nitrogen additions and microbial biomass:A meta-analysis of ecosystem studies[J].Ecology Letters,2008,11(10):1111-1120. [61] 高宗宝,王洪义,吕晓涛,等.氮磷添加对呼伦贝尔草甸草原4种优势植物根系和叶片C∶N∶P化学计量特征的影响[J].生态学杂志,2017,36(1):80-88. [62] BERGER T W,GLATZEL G.Response of [63] KOUKOURA Z,MAMOLOS A P,KALBURTJI K L.Decomposition of dominant plant species litter in a semi-arid grassland[J].Applied Soil Ecology,2003,23(1):13-23. [64] 晔薷罕,单玉梅,张璞进,等.荒漠草原不同放牧强度背景下添加氮水对凋落物分解的影响[J].生态学报,2020,40(8):59-76. [65] 姚钧能,吕建华,俞卫良,等.氮沉降和经营强度对毛竹林凋落叶生态化学计量特征的影响[J].应用生态学报,2018,29(2):467-473. [66] 魏子上,李慧燕,李科利,等.模拟N沉降和埋土对黄顶菊凋落物分解及养分释放的影响[J].生态学杂志,2017,36(9):2412-2424. [67] ANDY S,ALEXABDRE B,LUCA B,et al.Litter and ecosystem driven decomposition under elevated CO2 and enhanced N deposition in a [68] ZAK D R,HASSETT J E,BLACKWOOD C B,et al.Are basidiomycete laccase gene abundance and composition related to reduced lignolytic activity under elevated atmospheric NO3- deposition in a northern hardwood forest?[J].Microbial Ecology,2009,57(4):728-739. [69] DEFOREST J L,ZAKA D R,PREGITZERC K S,et al.Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillinin a northern hardwood forest[J].Soil Biology and Biochemistry,2004,36(6):965-971. [70] 文海燕,傅华,郭丁.黄土高原典型草原优势植物凋落物分解及养分释放对氮添加的响应[J].生态学报,2017,37(6):2014-2022. [71] 潘根兴,FALLAVIER P,卢玉文,等.近35年来庐山土壤酸化及其物理化学性质变化[J].土壤通报,1993,24(4):145-147. [72] 魏金明,姜勇,符明明,等.水、肥添加对内蒙古典型草原土壤碳、氮、磷及pH的影响[J].生态学杂志,2011,30(8):1642-1646. [73] 殷秀琴,李健东.羊草草原土壤动物群落多样性的研究[J].应用生态学报,1998,9(2):186-188. [74] YANG X T,NING G H,DONG H Y,et al.Soil microbial characters under different vegetation communities in Taihang mountain area[J].Chinese Journal of Applied Ecology,2006,17(9):1761-1764. [75] LI L J,ZENG D H,YU Z Y,et al.Soil microbial properties under N and P additions in a semi-arid,sandy grassland[J].Biology and Fertility of Soils,2010,46(6):653-658. [76] BI J,ZHANG N L,LIANG Y,et al.Interactive effects of water and nitrogen addition on soil microbial communities in a semiarid steppe[J].Journal of Plant Ecology,2011,5(3):320-329. [77] HOBBIE S E.Nitrogen effects on decomposition:A five-year experiment in eight temperate sites[J].Ecology,2008,89(9):2633-2644. [78] 葛晓敏,吴麟,唐罗忠.森林凋落物分解与酶的相互关系的研究进展[J].世界林业研究,2013,26(1):43-47. [79] GEORGE L V,KARRI K,ISSAC V,et al.Potential soil extracellular enzyme activity is altered by long-term experimental nitrogen deposition in semiarid shrublands[J].Applied Soil Ecology,2020,158:103779. [80] LUO C Y,XU G P,CHAO Z G,et al.Effect of warming and grazing on litter mass loss and temperature sensitivity of litter and dung mass loss on the Tibetan plateau[J].Global Change Biology,2010,16(5):1606-1617. [81] MCSHERRY M E,RITCHIE M E.Effects of grazing on grassland soil carbon:A global review[J].Global Change Biology,2013,19(5):1347-1357. [82] SHARIFF A R,BIONDINI M E,GRYGIEL C E.Grazing intensity effects on litter decomposition and soil nitrogen mineralization[J]. Journal of Range Management,1994,47:444-449. [83] RITCHIE M E,TILMAN D,KNOPS J M H. Herbivore effects on plant and nitrogen dynamics in oak savanna[J].Ecology,1998,79(1):165-177. [84] SUN Y,HE X Z,HOU F J,et al.Grazing increases litter decomposition rate but decreases nitrogen release rate in an alpine meadow[J].Biogeosciences,2018,15(13):4233-4243. [85] YANG C T,ZHANG Y,HOU F J,et al.Grazing activity increases decomposition of yak dung and litter in an alpine meadow on the Qinghai-Tibet plateau[J].Plant and Soil,2019,444(1/2):239-250. [86] CHUAN X Z,BORK E W,CHANG S X,et al.Long-term grazing accelerated litter decomposition in northern temperate grasslands[J].Ecosystems,2018,21(7):1321-1334. [87] HOLT J A.Grazing pressure and soil carbon,microbial biomass and enzyme activities in semi-arid northeastern Australia[J]. Applied Soil Ecology,1997,5(2):143-149. [88] OLOFSSON J,OKSANEN L.Role of litter decomposition for increased primary production in areas heavily grazed by reindeer:A litterbag experiment[J].Oikos,2002,96(3):507-515. [89] GIESE M,GAO Y Z,ZHAO Y,et al.Effects of grazing and rainfall variability on root and shoot decomposition in a semi-arid grassland[J].Applied Soil Ecology,2009,41(1):8-18. [90] 单玉梅,温超,杨勇,等.内蒙古典型草原凋落物分解对不同草地利用方式的响应[J].生态环境学报,2016,25(3):377-384. [91] 杨婷婷,姚国征,丁勇,等.放牧对内蒙古典型草原枯落物积累及分解的影响[J].干旱区资源与环境,2019,33(2):171-176. [92] PENNER J F,FRANK D A.Litter decomposition in Yellowstone grasslands:the roles of large herbivores,litter quality,and climate[J].Ecosystems,2019,22:929-937. [93] SEMMARTIN M,AGUIAR M R,DISTEL R A,et al.Litter quality and nutrient cycling affected by grazing-induced species replacements along a precipitation gradient[J].Oikos,2004,107(1):148-160. [94] SEMMARTIN M,DI BELLA C,DE S,et al.Grazing-induced changes in plant species composition affect plant and soil properties of grassland mesocosms[J].Plant and Soil,2010,328(1/2):471-481. [95] SONG X X,WANG L,ZHAO X,et al.Sheep grazing and local community diversity interact to control litter decomposition of dominant species in grassland ecosystem[J].Soil Biology and Biochemistry,2017,115:364-370. [96] HAN G,HAO X,ZHAO M,et al.Effect of grazing intensity on carbon and nitrogen in soil and vegetation in a meadow steppe in Inner Mongolia[J].Agriculture Ecosystems and Environment,2008,125(1/4):21-32. [97] 张扬建,朱军涛,沈若楠,等.放牧对草地生态系统影响的研究进展[J].植物生态学报,2020,44(5):553-564. [98] VAIERETTI M V,CINGOLANI A M,PÉREZ-HARGUINDEGUY N,et al. Effects of differential grazing on decomposition rate and nitrogen availability in a productive mountain grassland[J]. Plant and Soil,2013,371(1/2):675-691. [99] ARONS S R,O′CONNOR C R,HOSSEINI H M,et al. Dung pads increase pasture production, soil nutrients and microbial biomass carbon in grazed dairy systems[J].Nutrient Cycling in Agroecosystems,2009,84(1):81-92. [100] 杜子银,蔡延江,王小丹,等.放牧牦牛行为及其对高寒草地土壤特性的影响研究进展[J].草业学报,2019,28(7):186-197. [101] GOLLUSCIO R A,AUSTIN A T,MARTINEZ G C G,et al. Sheep grazing decreases organic carbon and nitrogen pools in the Patagonian steppe:combination of direct and indirect effects[J].Ecosystems,2009,12(4):686-697. [102] MA X Z,AMBUS P,WANG S P,et al.Priming of soil carbon decomposition in two Inner Mongolia grassland soils following sheep dung addition:a study using 13C natural abundance approach[J].PLoS One,2013,8:78578. [103] RISCH A C,JURGENSEN M F,FRANK D A.Effects of grazing and soil micro-climate on decomposition rates in a spatio-temporally heterogeneous grassland[J].Plant and Soil,2007,298(1):191-201. [104] PUMPANEN J,LAURILA T,SUN H,et al.Reindeer grazing alter soil fungal community structure and litter decomposition related enzyme activities in boreal coniferous forests in Finnish Lapland[J].Applied Soil Ecology,2018,132:74-82. [105] LI C L,HAO X Y,ZHAO M L,et al.Influence of historic sheep grazing on vegetation and soil properties of a desert steppe in Inner Mongolia[J].Agriculture Ecosystems and Environment,2008,128(1/2):109-116. [106] KLUMPP K,FONTAINE S,ATTARD E,et al.Grazing triggers soil carbon loss by altering plant roots and their control on soil microbial community[J].Journal of Ecology,2009,97:876-885. [107] HEWINS D B,FATEMI F,ADAMS B,et al.Grazing,regional climate and soil biophysical impacts on microbial enzyme activity in grassland soil of western Canada[J].Pedobiologia,2015,58(5/6):201-209. [108] DEANGELIS K M,SILVER W L,THOMPSON A W,et al.Microbial communities acclimate to recurring changes in soil redox potential status[J].Environmental Microbiology,2010,12(12):3137-3149. |
[1] | 晔薷罕, 希吉日塔娜, 常虹, 刘思博, 张璞进, 刘欣超, 殷国梅, 温超, 单玉梅, 刘桂香. 草地生态系统土壤与植被对极端干旱的响应研究进展[J]. 畜牧与饲料科学, 2024, 45(2): 58-72. |
[2] | 卻国萍, 龙金飞, 卫智军, 张勇, 张忠青, 徐生云, 刘瑞霞, 张毅辉, 张晓民, 张新宇. 放牧强度对荒漠草原不同植物功能群数量特征的影响[J]. 畜牧与饲料科学, 2024, 45(1): 71-78. |
[3] | 李尹琳, 毕铭, 夏方山, 王聪聪, 曾佳. 外源氮引发对白羊草种子萌发特性的影响[J]. 畜牧与饲料科学, 2023, 44(3): 83-88. |
[4] | 杨轩,栗国梁,贾鹏飞,侯青青,夏方山. 不同降水年型下饲用燕麦产量对降水变化的响应研究[J]. 畜牧与饲料科学, 2023, 44(1): 80-90. |
[5] | 崔媛媛, 白柳, 王梓晗, 赵宏宇, 宝音贺西格, 李治国, 韩国栋, 王忠武. 模拟降水和不同载畜率对荒漠草原生态系统碳交换的影响[J]. 畜牧与饲料科学, 2021, 42(6): 50-55. |
[6] | 乌日拉嘎, 刘慧洁, 萨如拉, 郝巴雅斯胡良, 乌亚罕, 特木尔布和. 严重沙化草地治理效果分析[J]. 畜牧与饲料科学, 2021, 42(5): 55-60. |
[7] | 玉梅, 李长青, 王利, 郭天龙, 王超, 金海, 张海鹰, 田丰. 内蒙古四子王旗草原土壤—牧草—放牧绵羊生态系统微量元素的季节变化研究与盈亏分析[J]. 畜牧与饲料科学, 2021, 42(4): 74-82. |
[8] | 卻国萍, 张爽, 吕世杰, 李泽, 卫智军. 放牧强度对荒漠草原建群种短花针茅空间异质性的影响[J]. 畜牧与饲料科学, 2021, 42(3): 74-80. |
[9] | 姜晓红, 宝力道, 阿拉腾布力格, 斯琴, 塔拉, 特木尔布和. 不同放牧强度对荒漠草原牧草微量元素和营养成分的影响[J]. 畜牧与饲料科学, 2021, 42(2): 91-96. |
[10] | 哈洁, 李治国, 韩国栋. 基于家畜生产优化管理模型的家庭牧场可持续发展研究[J]. 畜牧与饲料科学, 2021, 42(1): 83-90. |
[11] | 王莉梅, 王德宝, 康连和, 张园园, 王晓冬, 连海飞, 乔健敏, 王乐, 纳钦, 梁俊芳. 自然放牧条件下不同品种羊羊肉品质分析[J]. 畜牧与饲料科学, 2020, 41(5): 58-62. |
[12] | 杨燕燕, 翟琇, 达来, 郭天龙, 田瑛, 何亭漪, 李秀男, 罗晓平, 王德宝. 内蒙古牧区放牧羊的福利养殖现状分析[J]. 畜牧与饲料科学, 2020, 41(5): 86-90. |
[13] | 常虹, 晔薷罕, 刘亚红, 邱晓, 郝丽芬, 乌尼尔, 木兰, 孙海莲. 短花针茅荒漠草原不同放牧强度土壤线虫群落研究[J]. 畜牧与饲料科学, 2020, 41(3): 28-34. |
[14] | 雒帅, 郭军, 孙海洲, 刘梦静. 内蒙古部分地区牛肉和绵羊肉色度测定比较[J]. 畜牧与饲料科学, 2020, 41(2): 78-86. |
[15] | 刘佳, 卫智军, 张爽, 卻国萍, 李泽. 短花针茅草原主要植物种群与土壤养分对季节调控放牧的响应[J]. 畜牧与饲料科学, 2020, 41(1): 66-72. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||