北方农业学报 ›› 2023, Vol. 51 ›› Issue (5): 103-113.doi: 10.12190/j.issn.2096-1197.2023.05.11

• 农业信息技术 • 上一篇    下一篇

基于遗传算法BP神经网络芒果成熟度判别模型的构建与优化

房芯如, 邢靖萱, 索郎措, 江亿平   

  1. 南京农业大学,江苏 南京 210000
  • 收稿日期:2023-08-29 出版日期:2023-10-20 发布日期:2024-01-04
  • 通讯作者: 江亿平(1985—),男,副教授,博士,主要从事农产品物流方面的研究工作。
  • 作者简介:房芯如(2002—),女,本科生,专业为计算机科学与技术。
  • 基金资助:
    江苏省大学生创新创业训练计划项目(202210307169Y)

Construction and optimization of BP neural network mango maturity discrimination model based on genetic algorithm

FANG Xinru, XING Jingxuan, Suolangcuo , JIANG Yiping   

  1. Nanjing Agricultural University,Nanjing 210000,China
  • Received:2023-08-29 Online:2023-10-20 Published:2024-01-04

摘要:

【目的】基于遗传算法,构建及优化BP神经网络芒果成熟度判别模型。【方法】以小台芒为试验材料,测定不同成熟度芒果的硬度、糖度以及拍摄RGB图像,分析芒果硬度、糖度及图像特征变量(RGBHSV分量)与芒果成熟度之间的相关性;利用遗传算法得到最优网络权值及阈值,构建BP神经网络芒果成熟度判别模型,并对其进行优化。【结果】随着芒果成熟度的增加,糖度表现出较明显的增长趋势、硬度表现出较明显的下降趋势;图像的特征分量(RGBHS分量)在不同成熟度阶段呈显著性差异(P<0.05);基于遗传算法优化BP神经网络的芒果成熟度判别模型经过预测后,分类准确率为96.3%。【结论】基于遗传算法优化BP神经网络的芒果成熟度判别模型能较为准确地判断不同成熟度的芒果。

关键词: 芒果, 成熟度, 遗传算法, BP神经网络, 判别模型

Abstract:

【Objective】To construct and optimize BP neural network mango maturity discrimination model based on genetic algorithm.【Methods】Using Xiaotai Mango as the experimental material,the firmness and sugar content of mangoes with different maturity levels were measured,and RGB images captured. The correlation between mango maturity and mango firmness,sugar content,and image feature variables(RGBHSV components) were analyzed. BP neural network mango maturity discrimination model was constructed and optimized using optimal network weights and thresholds obtained by genetic algorithm.【Results】With the increase of mango maturity,sugar content showed clear increasing trend,while firmness showed decreasing trend. Image feature variables (RGBHS components) had significant differences (P<0.05) at different maturity stages. The BP neural network mango maturity discrimination model optimized by genetic algorithm had an classification accuracy of 96.3%.【Conclusion】The BP neural network mango maturity discrimination model optimized by genetic algorithm could accurately identify mangoes with different maturity levels.

Key words: Mango, Maturity, Genetic algorithm, BP neural network, Discrimination model

中图分类号: 

  • TP391.41