北方农业学报 ›› 2025, Vol. 53 ›› Issue (1): 125-134.doi: 10.12190/j.issn.2096-1197.2025.01.15

• 农业气象·农业信息技术 • 上一篇    

基于ConvNeXt卷积神经网络模型对烟叶成熟度识别的研究

郭雨萌1, 肖亦雄2, 肖孟宇2, 马云明2, 谭军2, 周喜新1, 范伟1   

  1. 1.湖南农业大学,湖南 长沙 410128;
    2.湖南省烟草公司衡阳市公司,湖南 衡阳 421000
  • 收稿日期:2024-08-29 出版日期:2025-02-20 发布日期:2025-06-26
  • 通讯作者: 范伟(1983—),男,讲师,博士,主要从事农产品品质智能感知与精准调控方面的研究工作。周喜新(1977—),男,副教授,博士,主要从事烟草科学与工程技术方面的研究工作。
  • 作者简介:郭雨萌(1994—),女,硕士研究生,研究方向为生物与农业工程。
  • 基金资助:
    湖南省烟草公司衡阳市公司科技项目(2021430481240017)

Research on tobacco leaf maturity identification based on the ConvNeXt convolutional neural network model

GUO Yumeng1, XIAO Yixiong2, XIAO Mengyu2, MA Yunming2, TAN Jun2, ZHOU Xixin1, FAN Wei1   

  1. 1. Hunan Agricultural University,Changsha 410128,China;
    2. Hengyang Branch of Hunan Tobacco Company,Hengyang 421000,China
  • Received:2024-08-29 Online:2025-02-20 Published:2025-06-26

摘要: 【目的】确定ConvNeXt卷积神经网络模型在烟叶成熟度识别中最适用于便携手持设备应用的主流图像预处理方法。【方法】使用便携手持图像采集设备采集烟叶图像,应用高斯缩放、对比增强、色彩增强和裁剪缩放4种预处理方法,结合ConvNeXt卷积神经网络构建模型,记录模型对烟叶成熟度识别的准确率、训练耗时和模型大小。通过对比分析不同预处理方法在性能、训练效率和模型大小上的表现,评估ConvNeXt卷积神经网络模型在便携设备上识别烟叶成熟度的应用潜力。【结果】在4种图像预处理方法中,高斯缩放在结合ConvNeXt卷积神经网络模型进行烟叶成熟度识别时综合表现最优,高斯缩放预处理后的模型准确率达到97.68%,优于对比增强、色彩增强和裁剪缩放,且训练耗时仅为8.927 min,模型大小为63.5 MB,兼具高效性与轻量化特征。在对比YOLO和XGBoost等其他模型时,高斯缩放结合ConvNeXt卷积神经网络构建的模型在各项指标中均表现突出,尤其在准确率和训练时间上展现出明显优势,适配便携手持设备的应用需求。【结论】高斯缩放作为图像预处理方法,能有效提升ConvNeXt卷积神经网络模型在烟叶成熟度识别任务中的准确性和运行效率。高斯缩放结合ConvNeXt卷积神经网络构建的模型训练速度快、占用资源少,适合在便携手持图像采集设备上使用。

关键词: ConvNeXt卷积神经网络模型, 烟叶成熟度识别, 便携手持图像采集设备, 智能化图像识别, 图像预处理方法

Abstract: 【Objective】To identify the most suitable mainstream image preprocessing method for deploying ConvNeXt convolutional neural network model on portable handheld devices in tobacco leaf maturity identification.【Methods】Tobacco leaf images were collected by a portable handheld image acquisition device. The images were preprocessed by four preprocessing methods,namely Gaussian scaling,contrast enhancement,color enhancement,and crop-scaling,respectively. A ConvNeXt convolutional neural network was used to construct a model,and the accuracy,training time,and model size of the model for tobacco leaf maturity identification were recorded. By comparative analysis of the performance,training efficiency,and model size of different preprocessing methods,evaluate the potential application of ConvNext convolutional neural network model in identifying tobacco leaf maturity on portable devices.【Results】Among the four image preprocessing methods,Gaussian scaling the best overall performance at tobacco leaf maturity identification when combined with the ConvNeXt convolutional neural network model. The model trained with Gaussian scaled images achieved an accuracy of 97.68%,outperforming the models trained with contrast enhancement,color enhancement,and crop-scaling. It also demonstrated the shortest training time(8.927 minutes) and a compact model size(63.5 MB),highlighting both efficiency and lightweight characteristics. Compared to other models such as YOLO and XGBoost,the ConvNeXt model with Gaussian scaling showed superior performance across all indexes,especially in terms of accuracy and training speed,making it well-suited for deployment on portable handheld devices.【Conclusion】As an image preprocessing method,Gaussian scaling can effectively enhance the accuracy and operational efficiency of the ConvNeXt convolutional neural network model for tobacco leaf maturity identification tasks. The model constructed by combining Gaussian scaling with ConvNeXt convolutional neural network has fast training speed and low resource consumption,making it suitable for use on portable handheld image acquisition devices.

Key words: ConvNeXt convolutional neural network model, Tobacco leaf maturity identification, Portable handheld image acquisition devices, Intelligent image identification, Image preprocessing methods

中图分类号: 

  • S572