摘要: 文章基于土壤表层水分指数(SWCI)模型,将Sentinel-2数据应用于该模型,得到了土壤水分含量及其空间分布情况,该数据可用于精准快速的低植被覆盖下土壤水分遥感反演。通过SPSS对SWCI与土壤水分的相关性分析,得到Pearson、Kendall'sTau-b和Spearman3个相关系数分别为0.880,0.778,0.891,呈显著性相关。在0~20cm土层土壤水分遥感反演中,Sentinel-2数据模型操作简单、精度较高,适用于业务化监测。
中图分类号:
于利峰;乌云德吉;乌兰吐雅;闫庆琦;刘文兵;包珺玮;许洪滔;任婷婷;于伟卓. 基于Sentinel-2数据土壤表层水分遥感反演[J]. 北方农业学报, 2018, 46(6): 120-124.
YU Lifeng;Wuyundeji;Wulantuya;YAN Qingqi;LIU Wenbing;BAO Junwei;XU Hongtao;REN Tingting;YU Weizhuo(Inner Mongolia Academy of Agricultual&Animal Husbandry Sciences,Inner Mongolia Engineering and Technology Research Center for Agricultural Remote SensingHohhot 010031,China;Institute of Agricultural Scienceof Horqin Youyi Front Banner,Horqin 137423,China;;Agricultural Technology Extension Center of Horqin Youyi Front Banner,Horqin 137423,China). Remote sensing inversion of soil surface moisture based on Sentinel-2 data[J]. Journal of Northern Agriculture, 2018, 46(6): 120-124.