北方农业学报 ›› 2019, Vol. 47 ›› Issue (5): 112-118.doi: 10.3969/j.issn.2096-1197.2019.05.21

• 农业经济·农业信息技术 • 上一篇    下一篇

基于GF-1/WFV时间序列数据的河套灌区主要农作物识别

乌云德吉1,2, 于利峰1, 承昊1, 包珺玮1, 许洪滔1, 赵佳乐1, 乌兰吐雅1   

  1. 1.内蒙古自治区农牧业科学院 农牧业经济与信息研究所,内蒙古 呼和浩特 010031;
    2.中国农业科学院 农业资源与农业区划研究所/农业农村部农业遥感重点实验室,北京 100081
  • 收稿日期:2019-09-07 出版日期:2019-10-20 发布日期:2019-12-11
  • 作者简介:乌云德吉(1987—),女,助理研究员,博士研究生,研究方向为农情遥感监测。
  • 基金资助:
    内蒙古农牧业青年创新基金项目(2017QNJJN10,2018CXJJ09)

Research on the identification method of main crops in Hetao Irrigated Area based on GF-1/WFV NDVI Time Series Data

Wuyundeji1,2, YU Lifeng1, CHENG Hao1, BAO Junwei1, XU Hongtao1, ZHAO Jiale1, Wulantuya1   

  1. 1.Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences,Hohhot 010031,China;;
    2.Key Laboratory of Agriinformation,Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning,Chinese Academy of Agricultural Sciences,Beijing 100081,China
  • Received:2019-09-07 Online:2019-10-20 Published:2019-12-11

摘要: 河套灌区农业资源条件较好,适宜于多种农作物的生长,且地块较为破碎,为精准进行该地区农业资源的调查和农情评价,采用遥感技术精准识别农作物种类。文章利用2017年4—10 月内9个时相的GF-1/WFV 数据,结合实地采集样本点转化成感兴区的方法,通过计算分析春小麦、玉米、向日葵、西葫芦和番茄5种农作物在整个生长阶段的时间序列NDVI值和变化特点,构建了基于NDVI阈值分割的决策树分类模型,对研究区春小麦、玉米、向日葵、西葫芦和番茄5种农作物进行了识别分类;在5 m分辨率的RapidEye 数据上选定了10个验证样方,目视解译样方内作物,利用解译结果对决策树分类结果进行验证,并用混淆矩阵表达。结果表明:春小麦、玉米、向日葵、西葫芦和番茄的用户精度分别为:88.86%,62.44%,87.29 %,65.78 %,总体分类精度达到76.29%,Kappa系数为0.652 9 。结论为通过分析基于GF-1/WFV NDVI时间序列数据可以较为准确识别中尺度上的大宗农作物,该方法适宜于农业资源调查遥感应用和研究。

关键词: 农作物识别, GF-1/WFV, NDVI, 决策树, 光谱信息

Abstract: Agricultural resources are in good condition in Hetao Irrigated Area,suitable for the growth of a variety of crops,and the plots are relatively fragmented.A remote sensing technology can be used to accurately identify crop types so that agricultural resources in this area can be investigated and the agricultural conditions can be evaluated.Using 9 phases of GF-1/WFV data in the period from April 2017 to October 2017,this paper combined the method of transforming the field sample points into sense areas to calculate and analyze the time series NDVI values and variation characteristics of spring wheat,corn,helianthus and vegetable in the whole growth stage in the study area,and thenthe decision tree classification model based on threshold segmentation was constructed to identify and classify the above five crops in this area.Ten verification quadrangles were selected from RapidEye data with a resolution of 5 m,the crops in the quadrangle were visually interpreted,and the classification results of the decision tree were verified with the interpretation results and expressed with confusion matrix.The results showed that identification accuracies of spring wheat,corn,sunflowers,zucchini,and tomatoes were 88.86%,62.44%,87.29% and 65.78%,respectively,while the overall accuracy reached 76.29% and the Kappa coefficient was 0.652 9.It can be seen that by analyzing the time series data based on GF-1/WFV NDVI,large crops in mesoscale can be identified more accurately.This method is suitable for the application and research of remote sensing in agricultural resource survey.

Key words: Crop identification, GF-1/WFV, NDVI, Decision tree, Spectral information

中图分类号: 

  • TP701