[1] SRINIVASAN K,DASTOOR P H,RADHAKRISHNAIAH P,et al.FDAS:A knowledge-based framework for analysis of defects in woven textile structures[J].Journal of the Textile Institute,1992,83(3):431-448. [2] 曾晏林,贺壹婷,蔺瑶,等.基于BCE-YOLOv5的苹果叶部病害检测方法[J].江苏农业科学,2023,51(15):155-163. [3] 周绍发,肖小玲,刘忠意,等.改进的基于YOLOv5s苹果树叶病害检测[J].江苏农业科学,2023,51(13):212-220. [4] 刘洋,冯全,王书志.基于轻量级CNN的植物病害识别方法及移动端应用[J].农业工程学报,2019,35(17):194-204. [5] 张俊宁,毕泽洋,闫英,等.基于注意力机制与改进YOLO的温室番茄快速识别[J].农业机械学报,2023,54(5):236-243. [6] 张小花,李浩林,李善军,等.基于EfficientDet-D1的草莓快速检测及分类[J].华中农业大学学报,2022,41(6):262-269. [7] 芮修业. 复杂背景下叶片病斑分割与识别策略的研究[D].天津:天津理工大学,2019. [8] HAN K,WANG Y H,TIAN Q.GhostNet:More features from cheap operations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle:IEEE,2020:1580-1589. [9] PRASHAR K,TALEAR R,KANT C.Robust automatic cotton crop disease recognition(ACDR)method using the hybrid feature descriptor with SVM[C]//2016 International Conference on Computing on sustainable Global Development.New Delhi:INDIACom,2017:1-3. [10] HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016:770-778. [11] HOWARD A G,ZHU M L,CHEN B,et al.MobileNets:Efficient convolutional neural networks for mobile vision applications[EB/OL].(2017-04-17).https://arxiv.org/abs/1704.04861. [12] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90. [13] LIN T Y,DOLLAR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE,2017:2117-2125. [14] LIU B,DING Z F,ZHANG Y,et al.Kiwifruit leaf disease identification using improved deep convolutional neural networks[C]//2020 IEEE Annual Computers,Software,and Applications Conference .Madrid:IEEE,2020:1267-1272. [15] LIU S,QI L,QIN H F,et al.Path aggregation network for instance segmentation[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE,2018:8759-8768. [16] LIU W,ANGUELOV D,ERHAN D,et al.SSD:Single Shot MultiBox Detector[M].Berlin:Springer International Publishing,2016. [17] REDMON J,FARHADI A.YOLOv3:An incremental improvement[EB/OL](2018-04-08).https://arxiv.org/abs/1804.02767. [18] HE K M,ZHANG X Y,REN S Q,et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916. [19] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:Unified,real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016:779-788. [20] REDMON J,FARHADI A.YOLO9000:Better,faster,stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Boston:IEEE,2017:7263-7271. [21] USHADEVI G,GOKULNATH B V.A survey on plant disease prediction using machine learning and deep learning techniques[J].Inteligencia Artificial,2020,23(65):136-154. [22] REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:Towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. [23] SUN H N,XU H W,LIU B,et al.MEAN-SSD:A novel real-time detector for apple leaf diseases using improved light-weight convolutional neural networks[J].Computers and Electronics in Agriculture,2021,189:106379. [24] SETHY P K,BARPANDA N K,RATH A K,et al.Image processing techniques for diagnosing rice plant disease:A survey[J].Procedia Computer Science,2020,167:516-530. [25] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].(2015-04-10).https://arxiv.org/abs/1409.1556. [26] SETHY P K,BRAPANDA N K,RATH A K.Detection and identification of rice leaf diseases using multiclass SVM and particle swarm optimization technique[J].International Journal of Innovative Technology and Exploring Engineering,2019,8(S2):108-120. [27] SUN Y Y,JIANG Z H,ZHANG L P,et al.SLIC_SVM based leaf diseases saliency map extraction of tea plant[J].Computers and Electronics in Agriculture,2019,157:102-109. [28] WOO S,PARK J,LEE J Y,et al.CBAM:Convolutional Block Attention Module[M].Berlin:Springer International Publishing,2018:3-19. [29] TURKOGLU M,YANIKOGLU B,HANBAY D.PlantDiseaseNet:Convolutional neural network ensemble for plant disease and pest detection[J].Signal,Image and Video Processing,2022,16(2):301-309. [30] WANG C Y,MARK LIAO H Y,WU Y H,et al.CSPNet:A new backbone that can enhance learning capability of CNN[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops .Seattle:IEEE,2020:390-391. [31] WANG Y,WANG Y,ZHAO J B.MGA-YOLO:A lightweight one-stage network for apple leaf disease detection[J].Frontiers in Plant Science,2022,13:927424. [32] SZEGEDY C,LIU W,JIA Y Q,et al.Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition.Boston:IEEE,2015:1-9. [33] Qi C,GAO J,Pearson S.Tea chrysanthemum detection under unstructured environments using the TC-YOLO model[J].Expert Systems with Applications,2022,193:116473. [34] XIE X Y,MA Y A,LIU B,et al.A deep-learning-based real-time detector for grape leaf diseases using improved convolutional neural networks[J].Frontiers in Plant Science,2020,11:751. [35] ZHU R L,ZOU H Y,LI Z Y,et al.Apple-Net:A model based on improved YOLOv5 to detect the apple leaf diseases[J].Plants,2022,12(1):169. [36] Sharma N,Gupta S,Reshan M S A.EfficientNetB0 cum FPN based semantic segmentation of gastrointestinal tract organs in MRI scans[J].Diagnostics,2023,13(14):2399. [37] 毕新杰. 机场净空区基于YOLO的无人机识别算法研究[D].天津:中国民航大学,2022. |