[1] ROCA B.Mycoplasma infections[J].Revista Clinica Espanola,2006,206(5):239-242. [2] RAZIN S.Adherence of pathogenic mycoplasmas to host cells[J].Bioscience Reports,1999,19(5):367-372. [3] 冉双存. 绵羊肺炎支原体病的致病机理及感染诊断技术研究进展[J].中国畜禽种业,2008(21):54-56. [4] ASKAR H,CHEN S L,HAO H F,et al.Immune evasion of Mycoplasma bovis[J].Pathogens,2021,10(3):297. [5] QIN L M,CHEN Y W,YOU X X.Subversion of the immune response by human pathogenic mycoplasmas[J].Frontiers in Microbiology,2019,10:1934. [6] WOOD G E,IVERSON-CABRAL S L,PATTON D L,et al. Persistence,immune response, and antigenic variation of Mycoplasma genitalium in an experimentally infected pig-tailed macaque (Macaca nemestrina)[J]. Infection and Immunity,2013,81(8):2938-2951. [7] GARWOOD T J,LEHMAN C P,WALSH D P,et al.Removal of chronic Mycoplasma ovipneumoniae carrier ewes eliminates pneumonia in a bighorn sheep population[J].Ecology and Evolution,2020,10(7):3491-3502. [8] WOOD M E,FOX K A,JENNINGS-GAINES J,et al.How respiratory pathogens contribute to lamb mortality in a poorly performing bighorn sheep (Ovis canadensis) herd[J].Journal of Wildlife Diseases,2017,53(1):126-130. [9] BESSER T E,LEVY J,ACKERMAN M,et al.A pilot study of the effects of Mycoplasma ovipneumoniae exposure on domestic lamb growth and performance[J].PLoS One,2019,14(2):e0207420. [10] DORIGO-ZETSMA J W,WILBRINK B,DANKERT J,et al. Mycoplasma pneumoniae P1 type 1- and type 2-specific sequences within the P1 cytadhesin gene of individual strains[J].Infection and Immunity,2001,69(9):5612-5618. [11] 陈超,李媛,郭丹,等.猪肺炎支原体p97 C末端基因重组腺病毒的构建及其免疫效果[J].微生物学报,2009,49(4):465-470. [12] 杨发龙,张焕容,汤承,等.绵羊肺炎支原体p113基因的序列分析及功能预测[J].华南农业大学学报,2013,34(1):117-121. [13] 黄海碧. 绵羊肺炎支原体检测方法的建立及黏附蛋白的研究[D].呼和浩特:内蒙古农业大学,2016. [14] LI Y N,JIANG Z J,XUE D,et al.Mycoplasma ovipneumoniae induces sheep airway epithelial cell apoptosis through an ERK signalling-mediated mitochondria pathway[J].BMC Microbiology,2016,16(1):222. [15] XUE D,MA Y,LI M,et al.Mycoplasma ovipneumoniae induces inflammatory response in sheep airway epithelial cells via a MyD88-dependent TLR signaling pathway[J].Veterinary Immunology and Immunopathology,2015,163(1/2):57-66. [16] 薛頔. MO感染ALI绵羊支气管上皮细胞过程中MyD88依赖TLR信号调节与ROS诱导细胞凋亡的研究[D].银川:宁夏大学,2016. [17] LUO H, WU X, XU Z, et al.NOD2/JNK triggers Mycoplasma ovipneumoniae-induced macrophage autophagy[J].Journal of Bacteriology,2020,202(20):e00689-719. [18] 李雅楠. MAPK/线粒体凋亡途径在绵羊肺炎支原体致支气管上皮细胞氧化损伤中的作用机制研究[D].银川:宁夏大学,2017. [19] XUE D,LI Y N,JIANG Z J,et al.A ROS-dependent and Caspase-3-mediated apoptosis in sheep bronchial epithelial cells in response to Mycoplasma ovipneumoniae infections[J].Veterinary Immunology and Immunopathology,2017,187:55-63. [20] DU Z,SUN Y,WANG J,et al.Comprehensive RNA-Seq profiling of the lung transcriptome of Bashbay sheep in response to experimental Mycoplasma ovipneumoniae infection[J].PLoS One,2020,15(7):e0214497. [21] 罗海霞,孙远航,徐兆坤,等.绵羊肺炎支原体对肺上皮细胞自噬影响的研究[J].中国预防兽医学报,2020,42(12):1268-1274. [22] ROTTEM S.Interaction of mycoplasmas with host cells[J].Physiological Reviews,2003,83(2):417-432. [23] BAI F,WU J D,LIU B,et al.Mycoplasma ovipneumoniae-derived lipid-associated membrane proteins induce cytokine secretion in mouse peritoneal macrophages through TLR2 signalling[J].Research in Veterinary Science,2020,132:474-480. [24] GARLANDA C,DINARELLO C A,MANTOVANI A.The interleukin-1 family:back to the future[J]. Immunity,2013,39(6):1003-1018. [25] 周怡,王柏林,杨美,等.绵羊肺炎支原体pcDNA3.1-TBP30-Hsp70融合表达质粒的构建及对小鼠细胞免疫应答的影响[J].中国畜牧兽医,2019,46(11):3387-3395. [26] 张颖,张凯,马金成,等.绵羊肺炎支原体感染对绵羊肺泡巨噬细胞和小鼠巨噬细胞Raw 264.7蛋白质组的影响[J].福建农业学报,2020,35(11):1244-1251. [27] SPAAN R S,EPPS C W,CROWHURST R,et al.Impact of Mycoplasma ovipneumoniae on juvenile bighorn sheep (Ovis canadensis) survival in the northern Basin and Range ecosystem[J].PeerJ,2021,9:e10710. [28] SCHNELL J,BOND M,MOLL N,et al.Mycoplasma pneumoniae IgG positivity is associated with tic severity in chronic tic disorders[J].Brain,Behavior,and Immunity,2022,99:281-288. [29] RAMOS E I,DAS K,HARRISON A L,et al.Mycoplasma genitalium and M. pneumoniae regulate a distinct set of protein-coding genes in epithelial cells[J].Frontiers in Immunology,2021,12:738431. [30] 彭力,钟礼立,黄振,等.儿童肺炎支原体肺炎合并腺病毒感染的临床观察[J].中国当代儿科杂志,2021,23(10):1033-1037. [31] CHENG Q,ZHANG H,SHANG Y X,et al.Clinical features and risk factors analysis of bronchitis obliterans due to refractory Mycoplasma pneumoniae pneumonia in children,a nomogram prediction model[J].BMC Infectious Diseases,2021,21(1):1085. [32] KANG K,BACHU M,PARK S H,et al.IFN-gamma selectively suppresses a subset of TLR4-activated genes and enhancers to potentiate macrophage activation[J].Nature Communications,2019,10(1):3320. [33] SATYANARAYANAN S K,EL KEBIR D,SOBOH S,et al.IFN-β is a macrophage-derived effector cytokine facilitating the resolution of bacterial inflammation[J].Nature Communications,2019,10(1):3471. [34] ATRI C,GUERFALI F Z,LAOUINI D,et al.Role of human macrophage polarization in inflammation during infectious diseases[J].International Journal of Molecular Sciences,2018,19(6):29921749. [35] CHEN J,ZHOU Y,ZHU E P,et al.Mycoplasma ovipneumoniae induces caspase-8-dependent extrinsic apoptosis and p53- and ROS-dependent intrinsic apoptosis in murine alveolar macrophages[J].Virulence,2021,12(1):2703-2720. [36] ZHANG Y Y,MEI S F,ZHOU Y L,et al.TIPE2 negatively regulates Mycoplasma pneumonia-triggered immune response via MAPK signaling pathway[J].Scientific Reports,2017,7(1):13319. [37] GONG L,DEVENISH R J,PRESCOTT M.Autophagy as a macrophage response to bacterial infection[J].IUBMB Life,2012,64(9):740-747. [38] YU Y F,WANG J,HAN R,et al.Mycoplasma hyopneumoniae evades complement activation by binding to factor H via elongation factor thermo unstable (EF-Tu)[J].Virulence,2020,11(1):1059-1074. [39] LI Z Q,DU Z H,SUN Y M,et al.Comprehensive RNA-Seq profiling of the lung transcriptome of Argali hybrid sheep in response to experimental Mycoplasma ovipneumoniae infection[J].Research in Veterinary Science,2020,132:57-68. [40] WANG K S,LIU X X,LI Q Q,et al.MHC-DRB1 exon 2 polymorphism and its association with Mycoplasma ovipneumonia resistance or susceptibility genotypes in sheep[J]. Journal of Genetics,2020,99:22. [41] WEISER G C,DREW M L,CASSIRER E F,et al.Detection of Mycoplasma ovipneumoniae and M. arginini in bighorn sheep using enrichment culture coupled with genus- and species-specific polymerase chain reaction[J].Journal of Wildlife Diseases,2012,48(2):449-453. [42] 何川川. 羊呼吸系统微生物调查及主要疾病病原分析[D].阿拉尔:塔里木大学,2020. [43] 吴翠兰,刘琰,李军,等.D型多杀性巴氏杆菌和绵羊肺炎支原体引起山羊的混合感染[J].动物医学进展,2020,41(3):57-61. [44] 金映红,汪阳,沙吾尔江·阿不都力艾拉,等.一例绵羊传染性胸膜肺炎、羊口疮及溶血性曼氏杆菌混合感染的研究[J].现代农业科技,2021(10):170-173. [45] RAGHAVAN B,BAVANANTHASIVAM J,KUGADAS A,et al.Effect of vaccination against pneumonia on the survival of bighorn sheep (Ovis canadensis)commingled with carrier animals[J].Veterinary Microbiology,2017,203:56-61. |