畜牧与饲料科学 ›› 2022, Vol. 43 ›› Issue (5): 39-47.doi: 10.12160/j.issn.1672-5190.2022.05.007
张雪莉1,刘晓丹1,靳二辉1,2,3,杜民1,2,张峰1,2
收稿日期:
2022-06-04
出版日期:
2022-09-30
发布日期:
2022-09-21
通讯作者:
张峰(1986—),男,讲师,博士,主要从事单胃动物肠道微生态与健康研究工作。
作者简介:
张雪莉(2000—),女,所学专业为动物科学。
基金资助:
ZHANG Xue-li1,LIU Xiao-dan1,JIN Er-hui1,2,3,DU Min1,2,ZHANG Feng1,2
Received:
2022-06-04
Online:
2022-09-30
Published:
2022-09-21
摘要:
商业化生产中仔猪早期断奶(3~4周龄)恰是肠道功能发育的关键时期,断奶应激带来的持续性肠道屏障功能损伤是断奶仔猪细菌性和病毒性肠炎及断奶后腹泻的主要诱因。饲料端“禁抗”背景下,运用营养策略改善早期断奶仔猪肠道功能的研究是研究者关注的焦点问题。从早期断奶对仔猪肠道屏障功能的影响及多种营养策略对断奶仔猪肠道功能改善的作用,综述了早期断奶致仔猪肠道屏障功能损伤的机理及氨基酸、抗菌肽、益生菌、膳食纤维、低聚糖、有机酸、微量营养素和脂质营养等营养策略改善仔猪肠道功能的作用机制,为通过营养策略改善断奶仔猪肠道功能相关研究提供参考。
中图分类号:
张雪莉, 刘晓丹, 靳二辉, 杜民, 张峰. 改善早期断奶仔猪肠道健康和功能的营养策略研究进展[J]. 畜牧与饲料科学, 2022, 43(5): 39-47.
ZHANG Xue-li, LIU Xiao-dan, JIN Er-hui, DU Min, ZHANG Feng. Advances in Nutritional Strategies for Improvement of Intestinal Health and Function in Early Weaned Piglets[J]. Animal Husbandry and Feed Science, 2022, 43(5): 39-47.
[1] |
ZIVKOVIC A M, RUCKER R B. Gut microbiota-nutrition and health[J]. Nutrition Research, 2022, 100:42-46.
doi: 10.1016/j.nutres.2021.12.005 |
[2] |
DE VOS W M, TILG H, VAN HUL M, et al. Gut microbiome and health:Mechanistic insights[J]. Gut, 2022, 71(5):1020-1032.
doi: 10.1136/gutjnl-2021-326789 |
[3] |
PLUSKE J R, TURPIN D L, KIM J C. Gastrointestinal tract (gut) health in the young pig[J]. Animal Nutrition, 2018, 4(2):187-196.
doi: 10.1016/j.aninu.2017.12.004 pmid: 30140758 |
[4] | KOGUT M H, ARSENAULT R J. Gut health:The new paradigm in food animal production[J]. Frontiers in Veterinary Science, 2016, 3:71. |
[5] |
BISCHOFF S C. ′Gut health′:A new objective in medicine?[J]. BMC Medicine, 2011, 9:24.
doi: 10.1186/1741-7015-9-24 |
[6] |
JAYARAMAN B, NYACHOTI C M. Husbandry practices and gut health outcomes in weaned piglets:A review[J]. Animal Nutrition, 2017, 3(3):205-211.
doi: 10.1016/j.aninu.2017.06.002 |
[7] |
MOESER A J, POHL C S, RAJPUT M. Weaning stress and gastrointestinal barrier development:Implications for lifelong gut health in pigs[J]. Animal Nutrition, 2017, 3(4):313-321.
doi: 10.1016/j.aninu.2017.06.003 |
[8] |
CHEN S, TAN B, XIA Y, et al. Effects of dietary gamma-aminobutyric acid supplementation on the intestinal functions in weaning piglets[J]. Food and Function, 2019, 10(1):366-378.
doi: 10.1039/c8fo02161a pmid: 30601517 |
[9] |
MODINA S C, POLITO U, ROSSI R, et al. Nutritional regulation of gut barrier integrity in weaning piglets[J]. Animals, 2019, 9(12):1-15.
doi: 10.3390/ani9010001 |
[10] |
LIU G, ZHENG J, WU X, et al. Putrescine enhances intestinal immune function and regulates intestinal bacteria in weaning piglets[J]. Food and Function, 2019, 10(7):4134-4142.
doi: 10.1039/c9fo00842j pmid: 31241125 |
[11] |
CHEN X, ZENG Z, HUANG Z, et al. Effects of dietary resveratrol supplementation on immunity,antioxidative capacity and intestinal barrier function in weaning piglets[J]. Animal Biotechnology, 2021, 32(2):240-245.
doi: 10.1080/10495398.2019.1683022 |
[12] |
ZHANG Y, ZHENG P, YU B, et al. Dietary spray-dried chicken plasma improves intestinal barrier function and modulates immune status in weaning piglets[J]. Journal of Animal Science, 2016, 94(1):173-184.
doi: 10.2527/jas.2015-9530 pmid: 26812324 |
[13] |
HE Y, FAN X, LIU N, et al. L-glutamine represses the unfolded protein response in the small intestine of weanling piglets[J]. Journal of Nutrition, 2019, 149(11):1904-1910.
doi: 10.1093/jn/nxz155 pmid: 31334766 |
[14] |
QI Z, CHEN Y G. Regulation of intestinal stem cell fate specification[J]. Science China Life Sciences, 2015, 58(6):570-578.
doi: 10.1007/s11427-015-4859-7 pmid: 25951932 |
[15] | ZHOU J, XIONG X, WANG K, et al. Ethanolamine metabolism in the mammalian gastrointestinal tract:Mechanisms,patterns,and importance[J]. Current Molecular Medicine, 2017, 17(2):92-99. |
[16] |
WANG L X, ZHU F, LI J Z, et al. Epidermal growth factor promotes intestinal secretory cell differentiation in weaning piglets via Wnt/beta-catenin signalling[J]. Animal, 2020, 14(4):790-798.
doi: 10.1017/S1751731119002581 |
[17] | XIONG X, YANG H, TAN B, et al. Differential expression of proteins involved in energy production along the crypt-villus axis in early-weaning pig small intestine[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2015, 309(4):229-237. |
[18] |
YANG H, WANG X, XIONG X, et al. Energy metabolism in intestinal epithelial cells during maturation along the crypt-villus axis[J]. Scientific Reports, 2016, 6:31917.
doi: 10.1038/srep31917 pmid: 27558220 |
[19] | WU F, XIONG X, YANG H, et al. Expression of proteins in intestinal middle villus epithelial cells of weanling piglets[J]. Frontiers in Bioscience-Landmark, 2017, 22: 539-557. |
[20] |
YANG H, XIONG X, WANG X, et al. Effects of weaning on intestinal upper villus epithelial cells of piglets[J]. PLoS One, 2016, 11(3):e0150216.
doi: 10.1371/journal.pone.0150216 |
[21] |
CHEN C, WANG Z, LI J, et al. Dietary vitamin E affects small intestinal histomorphology,digestive enzyme activity,and the expression of nutrient transporters by inhibiting proliferation of intestinal epithelial cells within jejunum in weaned piglets[J]. Journal of Animal Science, 2019, 97(3):1212-1221.
doi: 10.1093/jas/skz023 |
[22] | WANG L, YAN S, LI J, et al. The relationship of enterocyte proliferation with intestinal morphology and nutrient digestibility in weaning piglets[J]. Journal of Animal Science, 2019, 97(1):353-358. |
[23] |
HU C H, XIAO K, LUAN Z S, et al. Early weaning increases intestinal permeability,alters expression of cytokine and tight junction proteins,and activates mitogen-activated protein kinases in pigs[J]. Journal of Animal Science, 2013, 91(3):1094-1101.
doi: 10.2527/jas.2012-5796 |
[24] |
MCLAMB B L, GIBSON A J, OVERMAN E L, et al. Early weaning stress in pigs impairs innate mucosal immune responses to enterotoxigenic E. coli challenge and exacerbates intestinal injury and clinical disease[J]. PLoS One, 2013, 8(4):e59838.
doi: 10.1371/journal.pone.0059838 |
[25] |
WANG J, JI H. Tight junction proteins in the weaned piglet intestine:Roles and regulation[J]. Current Protein and Peptide Science, 2019, 20(7):652-660.
doi: 10.2174/1389203720666190125095122 |
[26] |
LIANG G H, WEBER C R. Molecular aspects of tight junction barrier function[J]. Current Opinion in Pharmacology, 2014, 19:84-89.
doi: 10.1016/j.coph.2014.07.017 pmid: 25128899 |
[27] |
MEDLAND J E, POHL C S, EDWARDS L L, et al. Early life adversity in piglets induces long-term upregulation of the enteric cholinergic nervous system and heightened,sex-specific secretomotor neuron responses[J]. Neurogastroenterology and Motility, 2016, 28(9):1317-1329.
doi: 10.1111/nmo.12828 |
[28] |
POHL C S, MEDLAND J E, MACKEY E, et al. Early weaning stress induces chronic functional diarrhea,intestinal barrier defects,and increased mast cell activity in a porcine model of early life adversity[J]. Neurogastroenterology and Motility, 2017, 29(11):1-18.
doi: 10.1111/nmo.13179 |
[29] |
LODEMANN U, AMASHEH S, RADLOFF J, et al. Effects of ex vivo infection with ETEC on jejunal barrier properties and cytokine expression in probiotic-supplemented pigs[J]. Digestive Diseases and Sciences, 2017, 62(4):922-933.
doi: 10.1007/s10620-016-4413-x |
[30] |
JUNG K, EYERLY B, ANNAMALAI T, et al. Structural alteration of tight and adherens junctions in villous and crypt epithelium of the small and large intestine of conventional nursing piglets infected with porcine epidemic diarrhea virus[J]. Veterinary Microbiology, 2015, 177(3/4):373-378.
doi: 10.1016/j.vetmic.2015.03.022 |
[31] | LUO X, GUO L, ZHANG J, et al. Tight junction protein occludin is a porcine epidemic diarrhea virus entry factor[J]. Journal of Virology, 2017, 91(10):202-217. |
[32] |
ZHAO S, GAO J, ZHU L, et al. Transmissible gastroenteritis virus and porcine epidemic diarrhoea virus infection induces dramatic changes in the tight junctions and microfilaments of polarized IPEC-J2 cells[J]. Virus Research, 2014, 192:34-45.
doi: 10.1016/j.virusres.2014.08.014 pmid: 25173696 |
[33] |
YANG Y, LI W, SUN Y, et al. Amino acid deprivation disrupts barrier function and induces protective autophagy in intestinal porcine epithelial cells[J]. Amino Acids, 2015, 47(10):2177-2184.
doi: 10.1007/s00726-014-1844-6 pmid: 25287255 |
[34] |
GU M J, SONG S K, LEE I K, et al. Barrier protection via Toll-like receptor 2 signaling in porcine intestinal epithelial cells damaged by deoxynivalnol[J]. Veterinary Research, 2016, 47:25.
doi: 10.1186/s13567-016-0309-1 pmid: 26857454 |
[35] |
ZHU H, LIU Y, CHEN S, et al. Fish oil enhances intestinal barrier function and inhibits corticotropin-releasing hormone/corticotropin-releasing hormone receptor 1 signalling pathway in weaned pigs after lipopolysaccharide challenge[J]. British Journal of Nutrition, 2016, 115(11):1947-1957.
doi: 10.1017/S0007114516001100 |
[36] |
OVERMAN E L, RIVIER J E, MOESER A J. CRF induces intestinal epithelial barrier injury via the release of mast cell proteases and TNF-alpha[J]. PLoS One, 2012, 7(6):e39935.
doi: 10.1371/journal.pone.0039935 |
[37] |
CAO S T, WANG C C, WU H, et al. Weaning disrupts intestinal antioxidant status,impairs intestinal barrier and mitochondrial function,and triggers mitophagy in piglets[J]. Journal of Animal Science, 2018, 96(3):1073-1083.
doi: 10.1093/jas/skx062 |
[38] |
PALUS K, MAKOWSKA K, CALKA J. Acrylamide-induced alterations in the cocaine- and amphetamine-regulated peptide transcript(CART)-like immunoreactivity within the enteric nervous system of the porcine small intestines[J]. Annals of Anatomy- Anatomischer Anzeiger, 2018, 219:94-101.
doi: 10.1016/j.aanat.2018.06.002 |
[39] | LAKE J I, HEUCKEROTH R O. Enteric nervous system development:Migration,differentiation,and disease[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2013, 305(1):1-24. |
[40] |
HAO M M, BORNSTEIN J C, YOUNG H M. Development of myenteric cholinergic neurons in ChAT-Cre;R26R-YFP mice[J]. Journal of Comparative Neurology, 2013, 521(14):3358-3370.
doi: 10.1002/cne.23354 pmid: 23649862 |
[41] |
MATTEOLI G, BOECKXSTAENS G E. The vagal innervation of the gut and immune homeostasis[J]. Gut, 2013, 62(8):1214-1222.
doi: 10.1136/gutjnl-2012-302550 pmid: 23023166 |
[42] |
LIU Y, ESPINOSA C D, ABELILLA J J, et al. Non-antibiotic feed additives in diets for pigs:A review[J]. Animal Nutrition, 2018, 4(2):113-125.
doi: 10.1016/j.aninu.2018.01.007 |
[43] |
XIONG X, TAN B, SONG M, et al. Nutritional intervention for the intestinal development and health of weaned pigs[J]. Frontiers in Veterinary Science, 2019, 6:1-14.
doi: 10.3389/fvets.2019.00001 |
[44] |
MODINA S C, POLITO U, ROSSI R, et al. Nutritional regulation of gut barrier integrity in weaning piglets[J]. Animals, 2019, 9(12):1045.
doi: 10.3390/ani9121045 |
[45] |
YANG X F, JIANG Z Y, GONG Y L, et al. Supplementation of pre-weaning diet with L-arginine has carry-over effect to improve intestinal development in young piglets[J]. Canadian Journal of Animal Science, 2016, 96(1):52-59.
doi: 10.1139/cjas-2015-0043 |
[46] | TAN B, XIAO H, XIONG X, et al. L-arginine improves DNA synthesis in LPS-challenged enterocytes[J]. Frontiers in Bioscience-Landmark, 2015, 20:989-1003. |
[47] |
TAN B, YIN Y, KONG X, et al. L-arginine stimulates proliferation and prevents endotoxin-induced death of intestinal cells[J]. Amino Acids, 2010, 38(4):1227-1235.
doi: 10.1007/s00726-009-0334-8 pmid: 19669080 |
[48] |
WANG J, LI G R, TAN B E, et al. Oral administration of putrescine and proline during the suckling period improves epithelial restitution after early weaning in piglets[J]. Journal of Animal Science, 2015, 93(4):1679-1688.
doi: 10.2527/jas.2014-8230 pmid: 26020189 |
[49] |
WANG H, ZHANG C, WU G, et al. Glutamine enhances tight junction protein expression and modulates corticotropin-releasing factor signaling in the jejunum of weanling piglets[J]. Journal of Nutrition, 2015, 145(1):25-31.
doi: 10.3945/jn.114.202515 pmid: 25527658 |
[50] |
XING S, ZHANG B, LIN M, et al. Effects of alanyl-glutamine supplementation on the small intestinal mucosa barrier in weaned piglets[J]. Asian-Australas Journal of Animal Science, 2017, 30(2):236-245.
doi: 10.5713/ajas.16.0077 |
[51] |
MIGUEL J C, MAXWELL A A, HSIEH J J, et al. Epidermal growth factor suppresses intestinal epithelial cell shedding through a MAPK-dependent pathway[J]. Journal of Cell Science, 2017, 130(1):90-96.
doi: 10.1242/jcs.182584 pmid: 27026527 |
[52] | XIAO H, WU M, SHAO F, et al. N-acetyl-L-cysteine protects the enterocyte against oxidative damage by modulation of mitochondrial function[J]. Mediators of Inflammation, 2016, 2016:8364279. |
[53] |
LIANG H, DAI Z, LIU N, et al. Dietary L-tryptophan modulates the structural and functional composition of the intestinal microbiome in weaned piglets[J]. Frontiers in Microbiology, 2018, 9:1736.
doi: 10.3389/fmicb.2018.01736 |
[54] |
ZONG E, HUANG P, ZHANG W, et al. The effects of dietary sulfur amino acids on growth performance, intestinal morphology, enzyme activity, and nutrient transporters in weaning piglets[J]. Journal of Animal Science, 2018, 96(3):1130-1139.
doi: 10.1093/jas/skx003 pmid: 29373684 |
[55] |
XIAO H, SHAO F, WU M, et al. The application of antimicrobial peptides as growth and health promoters for swine[J]. Journal of Animal Science and Biotechnology, 2015, 6(1):19.
doi: 10.1186/s40104-015-0018-z pmid: 26019864 |
[56] |
WANG S, ZENG X, YANG Q, et al. Antimicrobial peptides as potential alternatives to antibiotics in food animal industry[J]. International Journal of Molecular Sciences, 2016, 17(5):603.
doi: 10.3390/ijms17050603 |
[57] |
ROBINSON K, MA X, LIU Y, et al. Dietary modulation of endogenous host defense peptide synthesis as an alternative approach to in-feed antibiotics[J]. Animal Nutrition, 2018, 4(2):160-169.
doi: 10.1016/j.aninu.2018.01.003 pmid: 30140755 |
[58] |
来振衡, 陈虹羽, 吕银凤, 等. 抗菌肽在动物生产中应用的研究进展[J]. 动物营养学报, 2022, 34(6):3401-3410.
doi: 10.3969/j.issn.1006-267x.2022.06.001 |
[59] |
陈豪, 何流琴, 刘娣, 等. 霉菌毒素对动物肠道功能的影响及其作用机制研究进展[J]. 动物营养学报, 2022, 34(2):772-782.
doi: 10.3969/j.issn.1006-267x.2022.02.012 |
[60] |
ROBINSON K, DENG Z, HOU Y, et al. Regulation of the intestinal barrier function by host defense peptides[J]. Frontiers in Veterinary Science, 2015, 2:57.
doi: 10.3389/fvets.2015.00057 pmid: 26664984 |
[61] |
MANSOUR S C, PENA O M, HANCOCK R E. Host defense peptides:Front-line immunomodulators[J]. Trends in Immunology, 2014, 35(9):443-450.
doi: 10.1016/j.it.2014.07.004 |
[62] |
REN Z H, YUAN W, DENG H D, et al. Effects of antibacterial peptide on cellular immunity in weaned piglets[J]. Journal of Animal Science, 2015, 93(1):127-134.
doi: 10.2527/jas.2014-7933 pmid: 25403191 |
[63] |
PATEL R M, MYERS L S, KURUNDKAR A R, et al. Probiotic bacteria induce maturation of intestinal claudin 3 expression and barrier function[J]. American Journal of Pathology, 2012, 180(2):626-635.
doi: 10.1016/j.ajpath.2011.10.025 pmid: 22155109 |
[64] |
YANG F, WANG A, ZENG X, et al. Lactobacillus reuteri I5007 modulates tight junction protein expression in IPEC-J2 cells with LPS stimulation and in newborn piglets under normal conditions[J]. BMC Microbiology, 2015, 15:32.
doi: 10.1186/s12866-015-0372-1 |
[65] |
XIAO Z, LIU L, TAO W, et al. Clostridium tyrobutyricum protect intestinal barrier function from LPS-induced apoptosis via P38/JNK signaling pathway in IPEC-J2 cells[J]. Cellular Physiology and Biochemistry, 2018, 46(5):1779-1792.
doi: 10.1159/000489364 pmid: 29705796 |
[66] |
RICHTER J F, PIEPER R, ZAKRZEWSKI S S, et al. Diets high in fermentable protein and fibre alter tight junction protein composition with minor effects on barrier function in piglet colon[J]. British Journal of Nutrition, 2014, 111(6):1040-1049.
doi: 10.1017/S0007114513003498 |
[67] |
JIAO L F, KE Y L, XIAO K, et al. Effects of cello-oligosaccharide on intestinal microbiota and epithelial barrier function of weanling pigs[J]. Journal of Animal Science, 2015, 93(3):1157-1164.
doi: 10.2527/jas.2014-8248 pmid: 26020893 |
[68] | 金晓, 苏日古嘎, 张园园. 功能性低聚糖或糖醇促进大鼠肠道内矿物质吸收的研究进展[J]. 畜牧与饲料科学, 2022, 43(3):59-63. |
[69] |
MAO X, XIAO X, CHEN D, et al. Dietary apple pectic oligosaccharide improves gut barrier function of rotavirus-challenged weaned pigs by increasing antioxidant capacity of enterocytes[J]. Oncotarget, 2017, 8(54):92420-92430.
doi: 10.18632/oncotarget.21367 pmid: 29190927 |
[70] |
SUIRYANRAYNA M V, RAMANA J V. A review of the effects of dietary organic acids fed to swine[J]. Journal of Animal Science and Biotechnology, 2015, 6:45.
doi: 10.1186/s40104-015-0042-z pmid: 26500769 |
[71] |
DIAO H, ZHENG P, YU B, et al. Effects of dietary supplementation with benzoic acid on intestinal morphological structure and microflora in weaned piglets[J]. Livestock Science, 2014, 167:249-256.
doi: 10.1016/j.livsci.2014.05.029 |
[72] |
DIAO H, JIAO A R, YU B, et al. Gastric infusion of short-chain fatty acids can improve intestinal barrier function in weaned piglets[J]. Genes and Nutrition, 2019, 14:4.
doi: 10.1186/s12263-019-0626-x pmid: 30761185 |
[73] | GRILLI E, TUGNOLI B, FOERSTER C J, et al. Butyrate modulates inflammatory cytokines and tight junctions components along the gut of weaned pigs[J]. Journal of Animal Science, 2016, 94(Suppl 3):433-436. |
[74] |
YAN H, AJUWON K M. Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway[J]. PLoS One, 2017, 12(6):e0179586.
doi: 10.1371/journal.pone.0179586 |
[75] |
FERRARA F, TEDIN L, PIEPER R, et al. Influence of medium-chain fatty acids and short-chain organic acids on jejunal morphology and intra-epithelial immune cells in weaned piglets[J]. Journal of Animal Physiology and Animal Nutrition, 2017, 101(3):531-540.
doi: 10.1111/jpn.12490 pmid: 26919402 |
[76] |
ZHU C, LV H, CHEN Z, et al. Dietary zinc oxide modulates antioxidant capacity,small intestine development,and jejunal gene expression in weaned piglets[J]. Biological Trace Element Research, 2017, 175(2):331-338.
doi: 10.1007/s12011-016-0767-3 |
[77] |
XIA T, LAI W, HAN M, et al. Dietary ZnO nanoparticles alters intestinal microbiota and inflammation response in weaned piglets[J]. Oncotarget, 2017, 8(39):64878-64891.
doi: 10.18632/oncotarget.17612 pmid: 29029398 |
[78] |
GRILLI E, TUGNOLI B, VITARI F, et al. Low doses of microencapsulated zinc oxide improve performance and modulate the ileum architecture, inflammatory cytokines and tight junctions expression of weaned pigs[J]. Animal, 2015, 9(11):1760-1768.
doi: 10.1017/S1751731115001329 pmid: 26189883 |
[79] |
CHEN J, LI Y, TANG Z, et al. Regulatory functions of fatty acids with different chain lengths on the intestinal health in pigs and relative signaling pathways[J]. Current Protein and Peptide Science, 2019, 20(7):674-682.
doi: 10.2174/1389203720666190514120023 pmid: 31084590 |
[80] |
SHAHIDI F, AMBIGAIPALAN P. Omega-3 polyunsaturated fatty acids and their health benefits[J]. Annual Review of Food Science and Technology, 2018, 9(1):345-381.
doi: 10.1146/food.2018.9.issue-1 |
[81] |
XIAO K, LIU C, QIN Q, et al. EPA and DHA attenuate deoxynivalenol-induced intestinal porcine epithelial cell injury and protect barrier function integrity by inhibiting necroptosis signaling pathway[J]. FASEB Journal, 2019, 34(2):2483-2496.
doi: 10.1096/fsb2.v34.2 |
[82] |
UNGARO F, RUBBINO F, DANESE S, et al. Actors and factors in the resolution of intestinal inflammation: lipid mediators as a new approach to therapy in inflammatory bowel diseases[J]. Frontiers in Immunology, 2017, 8: 1331.
doi: 10.3389/fimmu.2017.01331 pmid: 29109724 |
[83] | GUI L, CHEN S, WANG H, et al. Omega-3 PUFAs alleviate high-fat diet-induced circadian intestinal microbes dysbiosis[J]. Molecular Nutrition and Food Research, 2019, 63(22):e1900492. |
[84] |
KANG S, HUANG J, LEE B K, et al. Omega-3 polyunsaturated fatty acids protect human hepatoma cells from developing steatosis through FFA4(GPR120)[J]. Molecular and Cell Biology of Lipids, 2018, 1863(2):105-116.
doi: 10.1016/j.bbalip.2017.11.002 |
[85] |
WANG M, ZHANG X, MA L J, et al. Omega-3 polyunsaturated fatty acids ameliorate ethanol-induced adipose hyperlipolysis:A mechanism for hepatoprotective effect against alcoholic liver disease[J]. Molecular Basis of Disease, 2017, 1863(12):3190-3201.
doi: 10.1016/j.bbadis.2017.08.026 |
[86] |
CASTILLA-MADRIGAL R, BARRENETXE J, MORENO-ALIAGA M J, et al. EPA blocks TNF-alpha-induced inhibition of sugar uptake in Caco-2 cells via GPR120 and AMPK[J]. Journal of Cellular Physiology, 2018, 233(3):2426-2433.
doi: 10.1002/jcp.v233.3 |
[87] |
KIM S, JIN Y, PARK Y. Estrogen and n-3 polyunsaturated fatty acid supplementation have a synergistic hypotriglyceridemic effect in ovariectomized rats[J]. Genes and Nutrition, 2015, 10(4):475.
doi: 10.1007/s12263-015-0475-1 pmid: 26109183 |
[1] | 唐怡莹, 刘金松, 肖世平, 刘玉兰. 日粮添加不同植物精油制剂对断奶仔猪生长性能、肠道消化酶活力及血清免疫球蛋白含量的影响[J]. 畜牧与饲料科学, 2024, 45(1): 25-30. |
[2] | 胡延波, 车丽妍, 王超男, 于娜, 李静, 李平, 井波, 齐萌. 新疆某养殖场腹泻仔猪奇异变形杆菌的分离鉴定、药物敏感性试验及毒力基因检测[J]. 畜牧与饲料科学, 2023, 44(3): 116-121. |
[3] | 刘凯莉, 罗建威, 岳珂, 陈盼, 何彦锋, 解静菲, 徐婷婷, 林露茜, 黄淑成. 益生菌在犬猫上的应用研究进展[J]. 畜牧与饲料科学, 2022, 43(3): 46-52. |
[4] | 李芳, 游斌杰, 郑萍. 高效包被氧化锌对断奶仔猪生长性能、血液生化指标及微量元素排泄量的影响[J]. 畜牧与饲料科学, 2021, 42(4): 19-24. |
[5] | 张心壮, 曹迪, 格日乐其木格, 芒来. 畜禽生产中氧化应激分子调控机理及营养策略研究进展[J]. 畜牧与饲料科学, 2021, 42(4): 29-36. |
[6] | 李梁梁, 王玉霞, 许方方, 李凤华, 焦莉. 不同形式补铁补硒对仔猪生长性能、血液生化指标、免疫性能的影响[J]. 畜牧与饲料科学, 2021, 42(2): 11-18. |
[7] | 巴贵, 德吉, 阿旺措吉, 张婷. 早期断奶对藏西北绒山羊背最长肌氨基酸和脂肪酸含量的影响[J]. 畜牧与饲料科学, 2021, 42(2): 62-65. |
[8] | 特日格勒, 白雪, 段仕, 刘娜娜, 孙燕勇, 付绍印, 刘永斌, 邬锐军, 赵培厅, 张文广. 腹泻仔猪与健康仔猪肠道微生物多样性比较[J]. 畜牧与饲料科学, 2020, 41(4): 107-110. |
[9] | 刘卫东, 程璞, 王章存, 黄丽鸽, 王清月, 程鸿星, 张梦迪, 张小丽, 翟晶晶. 大豆水解蛋白对断奶仔猪生产性能和营养物质利用率的影响[J]. 畜牧与饲料科学, 2020, 41(3): 1-5. |
[10] | 董俊, 杨春芳, 王东, 柴明杰, 郝怀志. 不同比例百合渣替代玉米对断奶仔猪生产性能的影响[J]. 畜牧与饲料科学, 2020, 41(2): 1-4. |
[11] | 徐绅烜, 冯景松, 金永辉, 丁伟钊, 王丹娜. 酸美酵素对仔猪生产性能影响试验[J]. 畜牧与饲料科学, 2019, 40(9): 63-64. |
[12] | 孙奴奴, 马晶晶. IL1RN基因在晋汾白猪仔猪和新山西黑猪仔猪不同组织和细胞中的表达特征分析[J]. 畜牧与饲料科学, 2019, 40(8): 1-5. |
[13] | 沙文锋,顾拥建. 仔猪教槽料的应用研究进展[J]. 畜牧与饲料科学, 2019, 40(5): 55-58. |
[14] | 何玉华, 贾晓满, 徐雪雪, 温娅. 不同浓度α-卡茄碱对仔猪小肠黏膜上皮细胞增殖率的影响[J]. 畜牧与饲料科学, 2019, 40(4): 15-17. |
[15] | 任方奎,张燕平,张桂芝,崔锦鹏. 仔猪肠道健康的营养调控技术及其应用[J]. 畜牧与饲料科学, 2019, 40(4): 34-37. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||