[1] |
韩笑. 绵羊肺炎支原体HSP70基因遗传多样性及其在分子检测中的应用[D].成都:西南民族大学,2012.
|
[2] |
ZHAO J Y, DU Y Z, SONG Y P, et al.Investigation of the prevalence of Mycoplasma ovipneumoniae in southern Xinjiang, China[J]. Journal of Veterinary Research,2021,65(2):155-160.
|
[3] |
凤英,高娃,赵世华,等.绵羊肺炎支原体内蒙古毒株的分离与鉴定[J].中国兽医杂志,2014,50(10):22-24,50.
|
[4] |
吴锦艳,尚佑军,陈妍,等.国内部分地区羊支原体肺炎血清学调查及分析[J].中国预防兽医学报,2017,39(2):156-158.
|
[5] |
姜新基,孟柯其其格,付登胜,等.羊支原体肺炎诊断及治疗[J].畜牧兽医科技信息,2021(6):94.
|
[6] |
郭长明,吴植,吴双,等.无乳链球菌dnaJ基因缺失株的构建及其致病性研究[J].中国畜牧兽医,2019,46(9):2507-2515.
|
[7] |
BALISH M F.Mycoplasma pneumoniae, an underutilized model for bacterial cell biology[J]. Journal of Bacteriology,2014,196(21):3675-3682.
|
[8] |
LIU Y, WANG H, ZHANG S, et al.Mucosal immunization with recombinant fusion protein DnaJ-△A146Ply enhances cross-protective immunity against Streptococcus pneumoniae infection in mice via interleukin 17A[J]. Infection and Immunity,2014,82(4):1666-1675.
|
[9] |
JIANG F, HE J, NAVARRO-ALVAREZ N, et al.Elongation factor Tu and heat shock protein 70 are membrane-associated proteins from Mycoplasma ovipneumoniae capable of inducing strong immune response in mice[J].PLoS One,2016,11(8):e0161170.
|
[10] |
GHAZAEI C.Role and mechanism of the Hsp70 molecular chaperone machines in bacterial pathogens[J]. Journal of Medical Microbiology,2017,66(3):259-265.
|
[11] |
OHTSUKA K, HATA M.Molecular chaperone function of mammalian Hsp70 and Hsp40[J].International Journal of Hyperthermia,2000,16(3):231-245.
|
[12] |
CUI J, MA C, YE G, et al.DnaJ (hsp40) of Streptococcus pneumoniae is involved in bacterial virulence and elicits a strong natural immune reaction via PI3K/JNK[J].Molecular Immunology,2017,83:137-146.
|
[13] |
BARRIOT R, LATOUR J,CASTANIÉ-CORNET M P, et al. J-Domain proteins in bacteria and their viruses[J].Journal of Molecular Biology,2020,432(13):3771-3789.
|
[14] |
ZHANG B, HAN X, YUE H, et al.Molecular characterization of the heat shock protein 70 gene in Mycoplasma ovipneumoniae[J].The Veterinary Journal,2013,198(1):299-301.
|
[15] |
周怡,王柏林,杨美,等.绵羊肺炎支原体pcDNA3.1-TBP30-Hsp70融合表达质粒的构建及对小鼠细胞免疫应答的影响[J].中国畜牧兽医,2019,46(11):3387-3395.
|
[16] |
ZHANG Y, MEI S, ZHOU Y, et al.TIPE2 negatively regulates Mycoplasma pneumonia-triggered immune response via MAPK signaling pathway[J]. Scientific Reports,2017, 7(1):13319.
|
[17] |
EINARSDOTTIR T, GUNNARSSON E, HJARTARDOTTIR S.Icelandic ovine Mycoplasma ovipneumoniae are variable bacteria that induce limited immune responses in vitro and in vivo[J].Journal of Medical Microbiology,2018, 67(10):1480-1490.
|
[18] |
LUO H, WU X, XU Z, et al.NOD2/c-Jun NH2-terminal kinase triggers Mycoplasma ovipneumoniae-induced macrophage autophagy[J]. Journal of Bacteriology,2020,202(20):e00689-19 .
|
[19] |
崔瑾,董杰,姜慧,等.肺炎链球菌dnaJ基因缺陷对小鼠肺炎感染模型天然免疫应答的影响[J].中国生物制品学杂志,2013,26(2):160-165.
|
[20] |
张晓燕. DnaK家族蛋白DnaJ介导猪链球菌2型的热应激及其对上皮细胞的黏附[J]. 杭州:浙江大学, 2014.
|
[21] |
CLOWARD J M, KRAUSE D C.Mycoplasma pneumoniae J-domain protein required for terminal organelle function[J].Molecular Microbiology,2009, 71(5):1296-1307.
|
[22] |
KHAN M N, BANSAL A, SHUKLA D, et al .Immunogenicity and protective efficacy of DnaJ (hsp40) of Streptococcus pneumoniae against lethal infection in mice[J]. Vaccine,2006,24(37/39):6225-6231.
|
[23] |
CUI Y, ZHANG X, GONG Y, et al.Immunization with DnaJ (hsp40) could elicit protection against nasopharyngeal colonization and invasive infection caused by different strains of Streptococcus pneumoniae[J]. Vaccine,2011,29(9):1736-1744.
|
[24] |
CUI J, SHAO F.Biochemistry and cell signaling taught by bacterial effectors[J]. Trends in Biochemical Sciences,2011,36(10):532-540.
|