[1] CHEN T T, YANG X Q, FU W M, et al.Strengthened assimilate transport improves yield and quality of super rice[J].Agronomy,2022,12(4):753. [2] CHEN K L, WANG Y P, ZHANG R, et al.CRISPR/cas genome editing and precision plant breeding in agriculture[J].Annual Review of Plant Biology,2019,70:667-697. [3] TABASHNIK B E, FABRICK J A, CARRIÈRE Y. Global patterns of insect resistance to transgenic bt crops:the first 25 years[J].Journal of Economic Entomology,2023,116(2):297-309. [4] HUANG F N.Resistance of the fall armyworm, Spodoptera frugiperda, to transgenic Bacillus thuringiensis Cry1F corn in the Americas:lessons and implications for Bt corn IRM in China[J].Insect Science,2021,28(3):574-589. [5] HARJU S M, DZIALAK M R, OSBORN R G, et al.Conservation planning using resource selection models:altered selection in the presence of human activity changes spatial prediction of resource use[J].Animal Conservation,2011,14(5):502-511. [6] 王向峰,才卓.中国种业科技创新的智能时代:“玉米育种4.0”[J].玉米科学,2019,27(1):1-9. [7] THORPE T A.History of plant tissue culture[J]. Molecular Biotechnology,2007,37(2):169-80. [8] 张成才,王升,王月枫,等.药用植物组织培养技术在中药资源可持续发展中的应用研究[J].中国中药杂志,2023,48(5):1186-1193. [9] 杨茹,袁庆华,曹致中,等.农杆菌介导多年生黑麦草遗传转化体系的建立[J].中国草地学报,2010,32(1):26-31. [10] 张婧,包爱科,柴薇薇,等.农杆菌介导的紫花苜蓿遗传转化体系研究进展[J].分子植物育种,2020,18(3):931-943. [11] ZHOU X J, XIA Y L, REN X P, et al.Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double-digest restriction-site-associated DNA sequencing (ddRADseq)[J].BMC Genomics,2014,15(1):351. [12] CHEN Z, GUO Z P, XU N, et al.Multiple insights into the two-sided effects of foliar application of cerium oxide nanoparticles on the growth of alfalfa (Medicago sativa L.)[J].Environmental Science:Nano,2024,11(8):3457-3474. [13] HUSEN A.Environmental, physiological and chemical controls of adventitious rooting in cuttings[M].Amsterdam:Elsevier,2022. [14] KHAN M M R, HASNUNNAHAR M, IWAYOSHI M, et al. Pollen and seed fertility differences of the backcross progenies between Solanum virginianum and eggplant with different inheritance pattern of chloroplast DNA[J].Scientia Horticulturae,2017,218:193-197. [15] 李聪. 生物技术在牧草育种中的应用[J].华南农业大学学报,2004,25(S2):73-76. [16] 李玉珠,师尚礼.紫花苜蓿与百脉根原生质体培养及不对称体细胞杂交[J].核农学报,2015,29(1):40-48. [17] PALUMBO F, PASQUALI E, ALBERTINI E, et al.A review of unreduced gametes and neopolyploids in alfalfa:how to fill the gap between well-established meiotic mutants and next-generation genomic resources[J].Plants,2021,10(5):999. [18] FERRIE A M R, NELSON K, BILIGETU B. Doubled haploidy methodology for three forage grasses [crested wheatgrass (Agropyron cristatum (L.) Gaertn.), hybrid bromegrass (Bromus riparius x B. inermis), and meadow bromegrass (Bromus riparius Rehm.)[J].Plant Cell, Tissue and Organ Culture (PCTOC),2024,156(3):92. [19] MA R, GUO Y D, PULLI S.Comparison of anther and microspore culture in the embryogenesis and regeneration of rye (Secale cereale)[J].Plant Cell, Tissue and Organ Culture,2004,76(2):147-157. [20] KIVIHARJU E, MOISANDER S, LAURILA J.Improved green plant regeneration rates from oat anther culture and the agronomic performance of some DH lines[J].Plant Cell, Tissue and Organ Culture,2005,81(1):1-9. [21] 靳慧卿. 豆科牧草体细胞胚再生体系构建及其差异性比较研究[D].呼和浩特:内蒙古农业大学,2015. [22] 张振霞. 几种牧草和草坪草植物遗传转化体系的建立及其转基因研究[D].兰州:甘肃农业大学,2002. [23] 吴关庭,陈锦清.高羊茅遗传转化研究进展[J].草业科学,2006(12):51-55. [24] 方程,韩建国.牧草遗传连锁图谱构建研究概述[J].草地学报,2006,14(3):287-291. [25] 毛培胜,王新国,黄莺.分子标记技术在牧草遗传多样性研究中的应用[C]//2009中国草原发展论坛论文集.合肥:农业部草原监理中心,中国草学会,2009:528-531. [26] 李志勇,孙启忠,李鸿雁,等.分子标记技术在牧草种质资源研究中的应用[J].草原与草坪,2010,30(5):91-96. [27] 金京波,王台,程佑发,等.我国牧草育种现状与展望[J].中国科学院院刊,2021,36(6):660-665. [28] BAGGE M, XIA X C, LÜBBERSTEDT T. Functional markers in wheat[J].Current Opinion in Plant Biology,2007,10(2):211-216. [29] 金京波,梁承志.饲草基因组学研究进展[J].植物学报,2022,57(6):732-741. [30] 王园,王晶,李淑霞.紫花苜蓿MsBBX24基因的克隆及耐盐性分析[J].草业学报,2023,32(3):107-117. [31] 冷暖,刘晓巍,张娜,等.草地早熟禾干旱胁迫转录组差异性分析[J].草业学报,2017,26(12):128-137. [32] 何永辉,马会男,王菲菲.作物转基因育种技术的实践与思考[J].种子科技,2024,42(22):32-34. [33] HORN M E, SHILLITO R D, CONGER B V, et al.Transgenic plants of orchardgrass (Dactylis glomerata L.) from protoplasts[J].Plant Cell Reports,1988,7(7):469-472. [34] 刘志鹏,周强,刘文献,等.中国牧草育种中的若干科学问题[J].草业学报,2021,30(12):184-193. [35] 段珍. 无芒隐子草LEA2/ALDH12A1基因和Bar基因共转化紫花苜蓿的研究[D].兰州:兰州大学,2015. [36] LI T, TANG S J, LI W, et al.Genome evolution and initial breeding of the Triticeae grass Leymus chinensis dominating the Eurasian Steppe[J].Proceedings of the National Academy of Sciences of the United States of America,2023,120(44):e2308984120. [37] BAO Q Y, WOLABU T W, ZHANG Q, et al.Application of CRISPR/Cas9 technology in forages[J].Grassland Research,2022,1(4):244-251. [38] 邓娴,李彤,曹晓风.基因编辑在饲草育种中的应用与展望[J].植物学报,2023,58(2):233-240. [39] YU L X, LIU X C, BOGE W, et al.Genome-wide association study identifies loci for salt tolerance during germination in autotetraploid alfalfa (Medicago sativa L.) using genotyping-by-sequencing[J].Frontiers in Plant Science,2016,7:956. [40] LIU X P, YU L X.Genome-wide association mapping of loci associated with plant growth and forage production under salt stress in alfalfa (Medicago sativa L.)[J].Frontiers in Plant Science,2017,8:853. [41] BIAZZI E, NAZZICARI N, PECETTI L, et al.Genome-wide association mapping and genomic selection for alfalfa (Medicago sativa) forage quality traits[J].PLoS One,2017,12(1):e0169234. [42] YAN H D, SUN M, ZHANG Z R, et al.Pangenomic analysis identifies structural variation associated with heat tolerance in pearl millet[J].Nature Genetics,2023,55(3):507-518. [43] HAWKINS C,YU L .Recent progress in alfalfa ( Medicago sativa L.) genomics and genomic selection[J].The Crop Journal,2018,6(6):565-575. |