[1] |
姜雅慧, 代鹏, 张雅岚, 等. 亚急性瘤胃酸中毒对反刍动物瘤胃生理功能及物质吸收转运的影响[J]. 动物营养学报, 2021, 33(2):637-643.
doi: 10.3969/j.issn.1006-267x.2021.02.004
|
[2] |
ABDELA N. Sub-acute ruminal acidosis (SARA) and its consequence in dairy cattle: A review of past and recent research at global prospective[J]. Achievements in the Life Sciences, 2016, 10(2):187-196.
doi: 10.1016/j.als.2016.11.006
|
[3] |
KOVÁCS L, RÓZSA L, PÁLFFY M, et al. Subacute ruminal acidosis in dairy cows - physiological background,risk factors and diagnostic methods[J]. Veterinarska Stanica, 2020, 51(1):5-17.
doi: 10.46419/vs
|
[4] |
COLMAN E, WAEGEMAN W, DE BAETS B, et al. Prediction of subacute ruminal acidosis based on milk fatty acids: A comparison of linear discriminant and support vector machine approaches for model development[J]. Computers and Electronics in Agriculture, 2015, 111:179-185.
doi: 10.1016/j.compag.2015.01.002
|
[5] |
KLEEN J L, UPGANG L, REHAGE J. Prevalence and consequences of subacute ruminal acidosis in German dairy herds[J]. Acta Veterinaria Scandinavica, 2013, 55(1):48.
doi: 10.1186/1751-0147-55-48
|
[6] |
PLAIZIER J C, KRAUSE D O, GOZHO G N, et al. Subacute ruminal acidosis in dairy cows:The physiological causes,incidence and consequences[J]. Veterinary Journal, 2008, 176(1):21-31.
doi: 10.1016/j.tvjl.2007.12.016
|
[7] |
KLEEN J L. Prevalence of subacute ruminal acidosis in dutch dairy herds[D]. Hannover: University of Veterinary Medicine Hannover, 2004.
|
[8] |
KLEEN J L, HOOIJER G A, REHAGE J, et al. Subacute ruminal a cidosis in Dutch dairy herds[J]. Veterinary Record, 2009, 164(22):681-683.
doi: 10.1136/vr.164.22.681
|
[9] |
ENEMARK J M D, JORGENSEN R J, KRISTENSEN N B. An evaluation of parameters for the detection of subclinical rumen acidosis in dairy herds[J]. Veterinary Research Communications, 2004, 28(8):687-709.
pmid: 15609869
|
[10] |
谢铁柱. 初产与经产荷斯坦奶牛围产期日常行为的比较研究[D]. 呼和浩特: 内蒙古农业大学, 2019.
|
[11] |
PIÑEIRO J M, MENICHETTI B T, BARRAGAN A A, et al. Associations of pre-and postpartum lying time with metabolic, inflammation, and health status of lactating dairy cows[J]. Journal of Dairy Science, 2019, 102(4):3348-3361.
doi: 10.3168/jds.2018-15386
|
[12] |
张智安, 牛骁麟, 李飞, 等. 反刍动物亚急性瘤胃酸中毒的易感性因素及生物标记物研究进展[J]. 草业科学, 2019, 36(8):2142-2150.
|
[13] |
KHIAOSA-ARD R, POURAZAD P, ADITYA S, et al. Factors related to variation in the susceptibility to subacute ruminal acidosis in early lactating Simmental cows fed the same grain-rich diet[J]. Animal Feed Science and Technology, 2018, 238:111-122.
doi: 10.1016/j.anifeedsci.2018.02.005
|
[14] |
NASROLLAHI S M, ZALI A, GHORBANI G R, et al. Variability in susceptibility to acidosis among high producing mid-lactation dairy cows is associated with rumen pH, fermentation, feed intake, sorting activity, and milk fat percentage[J]. Animal Feed Science and Technology, 2017, 228:72-82.
doi: 10.1016/j.anifeedsci.2017.03.007
|
[15] |
张涛, 牟英玉, 亓王盼, 等. 亚急性瘤胃酸中毒耐受性不同的奶牛血浆和乳中脂肪酸及代谢物组成分析[J]. 草业学报, 2021, 30(7):101-110.
|
[16] |
MAO S Y, ZHANG R Y, WANG D S, et al. Impact of subacute ruminal acidosis (SARA) adaptation on rumen microbiota in dairy cattle using pyrosequencing[J]. Anaerobe, 2013, 24:12-19.
doi: 10.1016/j.anaerobe.2013.08.003
pmid: 23994204
|
[17] |
林波, 梁辛, 李丽莉, 等. 饲粮精粗比对泌乳水牛瘤胃细菌和甲烷菌区系的影响[J]. 动物营养学报, 2016, 28(10):3101-3109.
doi: 10.3969/j.issn.1006-267x.2016.10.012
|
[18] |
李子健, 李大彪, 高民, 等. 不同生理阶段荷斯坦奶牛瘤胃细菌多样性研究[J]. 动物营养学报, 2018, 30(8):3017-3025.
|
[19] |
KIM Y H, NAGATA R, OHKUBO A, et al. Changes in ruminal and reticular pH and bacterial communities in Holstein cattle fed a high-grain diet[J]. BMC Veterinary Research, 2018, 14(1):310.
doi: 10.1186/s12917-018-1637-3
|
[20] |
WANG Y, LIU J, YIN Y, et al. Rumen microbial and fermentation characteristics are affected differently by acarbose addition during two nutritional types of simulated severe subacute ruminal acidosis in vitro[J]. Anaerobe, 2017, 47:39-46.
doi: 10.1016/j.anaerobe.2017.04.003
|
[21] |
韩郭皓, 高晓莎, 段晋伟, 等. 亚急性瘤胃酸中毒对绵羊瘤胃异常代谢产物、瘤胃菌群和血液相关指标的影响[J]. 动物营养学报, 2021, 33(4):2158-2167.
doi: 10.3969/j.issn.1006-267x.2021.04.035
|
[22] |
PLÖGER S, STUMPFF F, PENNER G B, et al. Microbial butyrate and its role for barrier function in the gastrointestinal tract[J]. Annals of the New York Academy of Sciences, 2012, 1258:52-59.
doi: 10.1111/j.1749-6632.2012.06553.x
pmid: 22731715
|
[23] |
WU S T, LI R W, LI W Z, et al. Transcriptome characterization by RNA-seq unravels the mechanisms of butyrate-induced epigenomic regulation in bovine cells[J]. PLoS One, 2012, 7(5):e36940.
doi: 10.1371/journal.pone.0036940
|
[24] |
ZHANG R Y, ZHU W Y, MAO S Y. High-concentrate feeding upregulates the expression of inflammation-related genes in the ruminal epithelium of dairy cattle[J]. Journal of Animal Science and Biotechnology, 2016, 7:42.
doi: 10.1186/s40104-016-0100-1
pmid: 27478614
|
[25] |
张瑞阳. 组学技术研究亚急性瘤胃酸中毒对奶牛瘤胃微生物、代谢和上皮功能的影响[D]. 南京: 南京农业大学, 2015.
|
[26] |
SUN X D, TANG Y, JIANG C H, et al. Oxidative stress, NF-κB signaling,NLRP3 inflammasome,and caspase apoptotic pathways are activated in mammary gland of ketotic Holstein cows[J]. Journal of Dairy Science, 2021, 104(1):849-861.
doi: 10.3168/jds.2020-18788
|
[27] |
MAO S Y, HUO W J, ZHU W Y. Microbiome-metabolome analysis reveals unhealthy alterations in the composition and metabolism of ruminal microbiota with increasing dietary grain in a goat model[J]. Environmental Microbiology, 2016, 18(2):525-541.
doi: 10.1111/1462-2920.12724
|
[28] |
范古玥, 赵晨旭, 孙国权, 等. 组胺对奶牛瘤胃上皮细胞mTOR自噬通路的影响[J]. 吉林农业大学学报, 2019, 41(2):226-230.
|
[29] |
王亚洲. 短链脂肪酸蓄积抑制SLC5A8和MCT1表达并加重亚急性瘤胃酸中毒[D]. 长春: 吉林大学, 2017.
|
[30] |
YAN L, ZHANG B, SHEN Z M. Dietary modulation of the expression of genes involved in short-chain fatty acid absorption in the rumen epithelium is related to short-chain fatty acid concentration and pH in the rumen of goats[J]. Journal of Dairy Science, 2014, 97(9):5668-5675.
doi: 10.3168/jds.2013-7807
pmid: 24996270
|
[31] |
LU Z Y, YAO L, JIANG Z Q, et al. Acidic pH and short-chain fatty acids activate Na+ transport but differentially modulate expression of Na+/H+ exchanger isoforms 1, 2, and 3 in omasal epithelium[J]. Journal of Dairy Science, 2016, 99(1):733-745.
doi: 10.3168/jds.2015-9605
|
[32] |
TONG L C, WANG Y, WANG Z B, et al. Propionate ameliorates dextran sodium sulfate-induced colitis by improving intestinal barrier function and reducing inflammation and oxidative stress[J]. Frontiers in Pharmacology, 2016, 7:253.
|
[33] |
刘军花. 亚急性瘤胃酸中毒对山羊瘤胃上皮屏障功能的影响及其机制[D]. 南京: 南京农业大学, 2014.
|