Animal Husbandry and Feed Science ›› 2023, Vol. 44 ›› Issue (3): 55-62.doi: 10.12160/j.issn.1672-5190.2023.03.008
• Animal Genetics,Reproduction and Breeding • Previous Articles Next Articles
KONG Deqing1,2,3,4,QIN Qing1,2,3,4,ZHANG Chongyan1,2,3,4,LIU Zhichen1,2,3,4,XU Xiaolong1,2,3,4,LAN Mingxi1,2,3,4,WANG Yichuan1,2,3,4,ZHANG Jingwen1,2,3,4,ZHAO Dan1,2,3,4,WANG Zhixin1,2,3,4,LI Jinquan1,2,3,4,LIU Zhihong1,2,3,4
Received:
2023-03-08
Online:
2023-05-30
Published:
2023-07-12
CLC Number:
KONG Deqing, QIN Qing, ZHANG Chongyan, LIU Zhichen, XU Xiaolong, LAN Mingxi, WANG Yichuan, ZHANG Jingwen, ZHAO Dan, WANG Zhixin, LI Jinquan, LIU Zhihong. Research Progress in Different Exogenous Substances Affecting Muscle Fiber Development[J]. Animal Husbandry and Feed Science, 2023, 44(3): 55-62.
[1] |
LEFAUCHEUR L. A second look into fibre typing-Relation to meat quality[J]. Meat Science, 2010, 84(2):257-270.
doi: 10.1016/j.meatsci.2009.05.004 |
[2] |
SUZUKI A, CASSENS R G. A histochemical study of myofiber types in muscle of the growing pig[J]. Journal of Animal Science, 1980, 51(6):1449-1461.
pmid: 6451606 |
[3] |
SEGAL D, DHANYASI N, SCHEJTER E D, et al. Adhesion and fusion of muscle cells are promoted by filopodia[J]. Developmental Cell, 2016, 38(3):291-304.
doi: 10.1016/j.devcel.2016.07.010 pmid: 27505416 |
[4] | DHANYASI N, SEGAL D, SHIMONI E, et al. Surface apposition and multiple cell contacts promote myoblast fusion in Drosophila flight muscles[J]. Journal of Cell Biology, 2015, 211(1):191-203. |
[5] |
MURACH K A, FRY C S, KIRBY T J, et al. Starring or supporting role? Satellite cells and skeletal muscle fiber size regulation[J]. Physiology, 2018, 33(1):26-38.
doi: 10.1152/physiol.00019.2017 pmid: 29212890 |
[6] | 施红梅, 何洋, 杜彦丽, 等. 畜禽骨骼肌肌纤维特性及其发育机制研究进展[J]. 中国畜牧兽医, 2021, 48(9):3191-3199. |
[7] | YOUN-CHUL R, LEE EUN- A, CHAI H H, et al. Effects of a novel p.A41P mutation in the swine myogenic factor 5 (MYF5) gene on protein stabilizing, muscle fiber characteristics and meat quality[J]. Korean Journal for Food Science of Animal Resources, 2018, 38(4):711-717. |
[8] |
BOUDJADI S, CHATTERJEE B, SUN W Y, et al. The expression and function of PAX3 in development and disease[J]. Gene, 2018, 666:145-157.
doi: S0378-1119(18)30469-4 pmid: 29730428 |
[9] |
BORELLO U, BERARDUCCI B, MURPHY P, et al. The Wnt/β-catenin pathway regulates gli-mediated Myf5 expression during somitogenesis[J]. Development, 2006, 133(18):3723-3732.
doi: 10.1242/dev.02517 |
[10] | 侯任达, 张润, 侯欣华, 等. 畜禽肌纤维发育规律及相关基因研究进展[J]. 畜牧兽医学报, 2022, 53(10):3279-3286. |
[11] |
HUANG Y J, WEN H S, ZHANG M Z, et al. The DNA methylation status of MyoD and IGF-Ⅰ genes are correlated with muscle growth during different developmental stages of Japanese flounder (Paralichthys olivaceus)[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 2018, 219/220:33-43.
doi: 10.1016/j.cbpb.2018.02.005 |
[12] | 赵阳. 母体或子代日粮中添加甲基供体对生长育肥猪生长性能和肉品质的影响[D]. 雅安: 四川农业大学, 2018. |
[13] |
DU J J, SHEN L Y, ZHANG P W, et al. The regulation of skeletal muscle fiber-type composition by betaine is associated with NFATc1/MyoD[J]. Journal of Molecular Medicine, 2018, 96(7):685-700.
doi: 10.1007/s00109-018-1657-2 |
[14] |
CAI S F, ZHU Q, GUO C L, et al. MLL1 promotes myogenesis by epigenetically regulating Myf5[J]. Cell Proliferation, 2020, 53(2):e12744.
doi: 10.1111/cpr.v53.2 |
[15] |
LIU S G, SUN Y M, ZHAO R, et al. Isoleucine increases muscle mass through promoting myogenesis and intramyocellular fat deposition[J]. Food and Function, 2021, 12(1):144-153.
doi: 10.1039/D0FO02156C |
[16] |
ZHAO Y, LI J Y, JIANG Q, et al. Leucine improved growth performance, muscle growth, and muscle protein deposition through AKT/TOR and AKT/FOXO3a signaling pathways in hybrid catfish Pelteobagrus vachelli × Leiocassis longirostris[J]. Cells, 2020, 9(2):327.
doi: 10.3390/cells9020327 |
[17] |
LIU Q, ZHANG X L, CHENG M B, et al. PRMT1 activates myogenin transcription via MyoD arginine methylation at R121[J]. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2019, 1862(10):194442.
doi: 10.1016/j.bbagrm.2019.194442 |
[18] |
GHANIM H, DHINDSA S, BATRA M, et al. Effect of testosterone on FGF2, MRF4, and myostatin in hypogonadotropic hypogonadism: Relevance to muscle growth[J]. The Journal of Clinical Endocrinology and Metabolism, 2019, 104(6):2094-2102.
doi: 10.1210/jc.2018-01832 |
[19] |
JAMA A, HUANG D T, ALSHUDUKHI A A, et al. Lipin1 is required for skeletal muscle development by regulating MEF2c and MyoD expression[J]. The Journal of Physiology, 2019, 597(3):889-901.
doi: 10.1113/JP276919 pmid: 30511745 |
[20] |
LV W, JIN J J, XU Z Y, et al. lncMGPF is a novel positive regulator of muscle growth and regeneration[J]. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11(6):1723-1746.
doi: 10.1002/jcsm.v11.6 |
[21] |
ZHANG W W, TONG H L, ZHANG Z H, et al. Transcription factor EGR1 promotes differentiation of bovine skeletal muscle satellite cells by regulating MyoG gene expression[J]. Journal of Cellular Physiology, 2018, 233(1):350-362.
doi: 10.1002/jcp.v233.1 |
[22] |
LIU L Y, HU R, YOU H Y, et al. Formononetin ameliorates muscle atrophy by regulating myostatin-mediated PI3K/Akt/FoxO3a pathway and satellite cell function in chronic kidney disease[J]. Journal of Cellular and Molecular Medicine, 2021, 25(3):1493-1506.
doi: 10.1111/jcmm.16238 pmid: 33405354 |
[23] |
AWAD K, AHUJA N, FIEDLER M, et al. Ionic silicon protects oxidative damage and promotes skeletal muscle cell regeneration[J]. International Journal of Molecular Sciences, 2021, 22(2):497.
doi: 10.3390/ijms22020497 |
[24] |
WU Z Q, XU H, XU Y M, et al. Andrographolide promotes skeletal muscle regeneration after acute injury through epigenetic modulation[J]. European Journal of Pharmacology, 2020, 888:173470.
doi: 10.1016/j.ejphar.2020.173470 |
[25] | ZAINUL AZLAN N, MOHD YUSOF Y A, ALIAS E, et al. Chlorella vulgaris modulates genes and muscle-specific microRNAs expression to promote myoblast differentiation in culture[J]. Evidence-based Complementary and Alternative Medicine, 2019, 2019:1-16. |
[26] |
ADDICKS G C, BRUN C E, SINCENNES M C, et al. MLL1 is required for PAX7 expression and satellite cell self-renewal in mice[J]. Nature Communications, 2019, 10:4256.
doi: 10.1038/s41467-019-12086-9 pmid: 31534153 |
[27] |
BAGGERMAN J O, THOMPSON A J, JENNINGS M A, et al. Effects of encapsulated methionine on skeletal muscle growth and development and subsequent feedlot performance and carcass characteristics in beef steers[J]. Animals, 2021, 11(6):1627.
doi: 10.3390/ani11061627 |
[28] |
LI X Z, YAN Y, ZHANG J F, et al. Oleic acid in the absence of a PPARγ agonist increases adipogenic gene expression in bovine muscle satellite cells[J]. Journal of Animal Science, 2019, 97(10):4114-4123.
doi: 10.1093/jas/skz269 |
[29] |
BASTOS U M C, ANDRADE ROSA I, TEIXEIRA J D, et al. Isoproterenol induces an increase in muscle fiber size by the proliferation of Pax7-positive cells and in a mTOR-independent mechanism[J]. Cell Biology International, 2019, 43(12):1425-1434.
doi: 10.1002/cbin.v43.12 |
[30] | 王琴. 睾酮通过PI3K-Akt信号通路调控鸡胚成肌细胞增殖的研究[D]. 南京: 南京农业大学, 2019. |
[31] |
SATO T, HIGASHIOKA K, SAKURAI H, et al. Core transcription factors promote induction of PAX3-positive skeletal muscle stem cells[J]. Stem Cell Reports, 2019, 13(2):352-365.
doi: S2213-6711(19)30232-2 pmid: 31353225 |
[32] |
MAGLI A, BAIK J, POTA P, et al. Pax3 cooperates with Ldb1 to direct local chromosome architecture during myogenic lineage specification[J]. Nature Communications, 2019, 10:2316.
doi: 10.1038/s41467-019-10318-6 pmid: 31127120 |
[33] |
SONG R H, ZHAO S N, XU Y, et al. MRTF-a regulates myoblast commitment to differentiation by targeting PAX7 during muscle regeneration[J]. Journal of Cellular and Molecular Medicine, 2021, 25(18):8645-8661.
doi: 10.1111/jcmm.16820 pmid: 34347392 |
[34] |
LING Y H, SUI M H, ZHENG Q, et al. miR-27b regulates myogenic proliferation and differentiation by targeting Pax3 in goat[J]. Scientific Reports, 2018, 8:3909.
doi: 10.1038/s41598-018-22262-4 |
[35] |
DE MORREE A, KLEIN J D D, GAN Q, et al. Alternative polyadenylation of Pax3 controls muscle stem cell fate and muscle function[J]. Science, 2019, 366(6466):734-738.
doi: 10.1126/science.aax1694 pmid: 31699935 |
[36] | TAN Y, SHEN L Y, GAN M L, et al. Downregulated miR-204 promotes skeletal muscle regeneration[J]. BioMed Research International, 2020, 2020:3183296. |
[37] |
JOANNA B, IWONA G, MACIEJ D, et al. Transient microRNA expression enhances myogenic potential of mouse embryonic stem cells[J]. Stem Cells, 2018, 36(5):655-670.
doi: 10.1002/stem.2772 pmid: 29314416 |
[38] |
YOUSUF Y, DATU A, BARNES B, et al. Metformin alleviates muscle wasting post-thermal injury by increasing Pax7-positive muscle progenitor cells[J]. Stem Cell Research and Therapy, 2020, 11(1):18.
doi: 10.1186/s13287-019-1480-x pmid: 31915055 |
[39] |
WANG B, NIE W, FU X, et al. Neonatal vitamin A injection promotes cattle muscle growth and increases oxidative muscle fibers[J]. Journal of Animal Science and Biotechnology, 2018, 9:82.
doi: 10.1186/s40104-018-0296-3 pmid: 30459947 |
[40] |
SWIERCZEK-LASEK B, NESKA J, KOMINEK A, et al. Interleukin 4 moderately affects competence of pluripotent stem cells for myogenic conversion[J]. International Journal of Molecular Sciences, 2019, 20(16):3932.
doi: 10.3390/ijms20163932 |
[41] |
SAH J P, HAO N T T, HAN X H, et al. Ectonucleotide pyrophosphatase 2 (ENPP2) plays a crucial role in myogenic differentiation through the regulation by WNT/β-Catenin signaling[J]. The International Journal of Biochemistry and Cell Biology, 2020, 118:105661.
doi: 10.1016/j.biocel.2019.105661 |
[42] |
ADHIKARI A, DAVIE J. JARID2 and the PRC2 complex regulate skeletal muscle differentiation through regulation of canonical Wnt signaling[J]. Epigenetics and Chromatin, 2018, 11(1):46.
doi: 10.1186/s13072-018-0217-x |
[43] |
DANCEVIC C, GIBERT Y, BERGER J, et al. The ADAMTS5 metzincin regulates zebrafish somite differentiation[J]. International Journal of Molecular Sciences, 2018, 19(3):766.
doi: 10.3390/ijms19030766 |
[44] |
MUMFORD P W, ROMERO M A, MAO X, et al. Cross talk between androgen and Wnt signaling potentially contributes to age-related skeletal muscle atrophy in rats[J]. Journal of Applied Physiology, 2018, 125(2):486-494.
doi: 10.1152/japplphysiol.00768.2017 pmid: 29722624 |
[45] |
HUNTER A, DAI Y K, BROWN K J, et al. TAK1/Map3k7 enhances differentiation of cardiogenic endoderm from mouse embryonic stem cells[J]. Journal of Molecular and Cellular Cardiology, 2019, 137:132-142.
doi: S0022-2828(18)30959-3 pmid: 31668971 |
[46] |
LI J W, WANG Y S, WANG Y, et al. Fibronectin type Ⅲ domain containing four promotes differentiation of C2C12 through the Wnt/β-catenin signaling pathway[J]. The FASEB Journal, 2020, 34(6):7759-7772.
doi: 10.1096/fsb2.v346 |
[47] |
HAN S S, CUI C, HE H R, et al. Myoferlin regulates Wnt/β-catenin signaling-mediated skeletal muscle development by stabilizing dishevelled-2 against autophagy[J]. International Journal of Molecular Sciences, 2019, 20(20):5130.
doi: 10.3390/ijms20205130 |
[48] |
YIN H D, HAN S S, CUI C, et al. Plectin regulates Wnt signaling mediated-skeletal muscle development by interacting with Dishevelled-2 and antagonizing autophagy[J]. Gene, 2021, 783:145562.
doi: 10.1016/j.gene.2021.145562 |
[49] |
LIU D, LI S, CUI Y F, et al. Podocan affects C2C12 myogenic differentiation by enhancing Wnt/β-catenin signaling[J]. Journal of Cellular Physiology, 2019, 234(7):11130-11139.
doi: 10.1002/jcp.27763 pmid: 30652305 |
[50] |
HINDI S M, SHIN J, GALLOT Y S, et al. MyD88 promotes myoblast fusion in a cell-autonomous manner[J]. Nature Communications, 2017, 8:1624.
doi: 10.1038/s41467-017-01866-w pmid: 29158520 |
[51] | OKUHARA S, BIRJANDI A A, ADEL AL-LAMI H, et al. Temporospatial sonic hedgehog signalling is essential for neural crest-dependent patterning of the intrinsic tongue musculature[J]. Development, 2019, 146(21):180075. |
[52] | MOK G F, LOZANO-VELASCO E, MANIOU E, et al. miR-133 mediated regulation of the hedgehog pathway orchestrates embryo myogenesis[J]. Development, 2018, 145(12):159657. |
[53] |
ZHANG Y, YU B, YU J, et al. Butyrate promotes slow-twitch myofiber formation and mitochondrial biogenesis in finishing pigs via inducing specific microRNAs and PGC-1α expression[J]. Journal of Animal Science, 2019, 97(8):3180-3192.
doi: 10.1093/jas/skz187 |
[54] | 张封东. 胚蛋给养N-氨甲酰谷氨酸对肉仔鸡肉品质的影响[D]. 北京: 中国农业科学院, 2020. |
[55] | 王曦, 肖康, 刘文斌, 等. 饲料脂肪酸碳链长度对团头鲂生长、肌纤维发育及肉质的影响[J/OL]. 水产学报:1-15[2022-10-06]. http://kns.cnki.net/kcms/detail/31.1283.S.20220722.1335.002.html. |
[56] | 王聪聪. DHA对团头鲂生长、肌纤维发育和细胞周期的影响研究[D]. 南京: 南京农业大学, 2020. |
[57] |
WANG X Y, CHEN X L, HUANG Z Q, et al. microRNA-499-5p regulates porcine myofiber specification by controlling Sox6 expression[J]. Animal, 2017, 11(12):2268-2274.
doi: 10.1017/S1751731117001008 |
[58] |
ZHANG Y, YAN H L, ZHOU P, et al. microRNA-152 promotes slow-twitch myofiber formation via targeting uncoupling protein-3 gene[J]. Animals, 2019, 9(9):669.
doi: 10.3390/ani9090669 |
[59] | FIGEAC N, MOHAMED A D, SUN C S, et al. Vgll3 operates via Tead1, Tead3 and Tead4 to influence myogenesis in skeletal muscle[J]. Journal of Cell Science, 2019, 132(13):225946. |
[60] |
LI M J, TANG X C, YOU W N, et al. HMEJ-mediated site-specific integration of a myostatin inhibitor increases skeletal muscle mass in porcine[J]. Molecular Therapy - Nucleic Acids, 2021, 26:49-62.
doi: 10.1016/j.omtn.2021.06.011 |
[61] | XU M, CHEN X L, HUANG Z Q, et al. Procyanidin B2 promotes skeletal slow-twitch myofiber gene expression through the AMPK signaling pathway in C2C12 myotubes[J]. Journal of Agricultural and Food Chemistry, 2020, 68(5):1306-1314. |
[62] |
GOMES G, BAGRI K M, ANDRADE ROSA I, et al. Activation of YAP regulates muscle fiber size in a PKC-dependent mechanism during chick in vitro myogenesis[J]. Journal of Muscle Research and Cell Motility, 2022, 43(2):73-86.
doi: 10.1007/s10974-021-09608-8 |
[63] | 宋燕. 酶解大豆蛋白对生长中期草鱼生长性能和肌肉品质的影响及机制研究[D]. 雅安: 四川农业大学, 2020. |
[64] |
SON Y H, JANG E J, KIM Y W, et al. Sulforaphane prevents dexamethasone-induced muscle atrophy via regulation of the Akt/Foxo1 axis in C2C12 myotubes[J]. Biomedicine and Pharmacotherapy, 2017, 95:1486-1492.
doi: S0753-3322(17)32705-1 pmid: 28946211 |
[65] |
PICARD B, GAGAOUA M. Muscle fiber properties in cattle and their relationships with meat qualities:An overview[J]. Journal of Agricultural and Food Chemistry, 2020, 68(22):6021-6039.
doi: 10.1021/acs.jafc.0c02086 |
[66] |
QUIAT D, VOELKER K A, PEI J M, et al. Concerted regulation of myofiber-specific gene expression and muscle performance by the transcriptional repressor Sox6[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(25):10196-10201.
doi: 10.1073/pnas.1107413108 pmid: 21633012 |
[67] |
LAHMANN I, BRÖHL D, ZYRIANOVA T, et al. Oscillations of MyoD and Hes1 proteins regulate the maintenance of activated muscle stem cells[J]. Genes and Development, 2019, 33(9/10):524-535.
doi: 10.1101/gad.322818.118 |
[68] |
LUO W, LIN Z T, CHEN J H, et al. TMEM 182 interacts with integrin beta 1 and regulates myoblast differentiation and muscle regeneration[J]. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12(6):1704-1723.
doi: 10.1002/jcsm.12767 pmid: 34427057 |
[1] | GUO Rongming, ZHAO Xin, GAO Guorong, MIAO Yanjun. Research Progress on Elymus nutans [J]. Animal Husbandry and Feed Science, 2024, 45(2): 73-81. |
[2] | LI Guangxi, HAN Tingting, WU Zihao, WU Jing. Multilocus Sequence Typing (MLST),Antimicrobial Resistance Analysis and Virulence Gene Detection of Escherichia coli Isolated from Sheep in a Slaughterhouse in Aksu Prefecture, Xinjiang Uygur Autonomous Region [J]. Animal Husbandry and Feed Science, 2024, 45(2): 95-102. |
[3] | HUANG Meizhi, HE Qisong, FENG Shuping, LONG Feng, YIN Yanwen, MO Shenglan, HU Liping, HUANG Shengbin, HAN Yinhua, ZHOU Qing′an, LAN Huihua, WEI Haina, WEI Yuanyuan, GAN Yu, SHI Kaichuang. Molecular Epidemiological Investigation and Genetic Variation Analysis of Porcine Circovirus Type 2 (PCV2)in Guangxi Zhuang Autonomous Region [J]. Animal Husbandry and Feed Science, 2024, 45(2): 109-115. |
[4] | GUO Chengyu, FANG Yongyu, YI Fengyan, SHI Zhidan, QIAO Huilei, LIU Fang, ZHAO Heping, ZHU Linfei, DING Haijun. Analysis and Evaluation on Grain Quality Traits of Forage Barley [J]. Animal Husbandry and Feed Science, 2024, 45(1): 79-84. |
[5] | ZHAO Yao, XING Guofeng, SU Fanfan, GAO Pan, PENG Jian, WU Zihao, WU Jing. Antimicrobial Resistance Profile,CTX-M Gene Prevalence and Virulence Gene Detection of Escherichia coli Strains Isolated from Cattle in Ta′ e Reclamation Area,Xinjiang Uygur Autonomous Region [J]. Animal Husbandry and Feed Science, 2024, 45(1): 94-101. |
[6] | LU Ya′nan, DING Wenli, YUE Taojing, XU Bowen, HUANG Shucheng. Recent Progress in the Roles of Integrin in Regulating Bone Health in Livestock and Poultry via PI3K/Akt Signaling Pathway [J]. Animal Husbandry and Feed Science, 2024, 45(1): 120-128. |
[7] | WEI Yuanyuan, Hongmei, WANG Haisheng. Transcriptome Sequencing Analysis Reveals the Possible Therapeutic Mechanisms of a Traditional Mongolian Medicine Honghua Qinggan 13 Flavor Pills in CCl4 Induced Intestinal Injury in Mice [J]. Animal Husbandry and Feed Science, 2023, 44(6): 13-21. |
[8] | LIN-PENG Chubin, SUN Sanshan, GAO Yajie, RUAN Chao, YAN Dujian. Research Progress of FABPs Gene Family in Animal Breeding [J]. Animal Husbandry and Feed Science, 2023, 44(6): 76-81. |
[9] | SHI Jianzhou, YU Jinran, WANG Yanwei, WANG Tiejun, LI Na, LIU Yangkun, YAO Lunguang. Analysis of Whole Transcriptome Expression Profile of Breast Muscles in Xichuan Black-bone Chicken before and after Hatching [J]. Animal Husbandry and Feed Science, 2023, 44(5): 1-7. |
[10] | LI Qianqian, WANG Dongyang, BAI Sarina, LIU Jianqi, BAO Tuya, GUO Xiaozhen. Effects of Testosterone on the Expression of Adamts16 Gene in Sertoli Cells and Spermatogonia of Neonatal Rats [J]. Animal Husbandry and Feed Science, 2023, 44(5): 15-21. |
[11] | WANG Xingwen, YU Yaoran, LIU Hao, YU Zetian, DONG Xiaoxia, PENG Hua. Current Status of Livestock and Poultry Genetic Resource Conservation and Utilization in Canada and the Enlightenment for China [J]. Animal Husbandry and Feed Science, 2023, 44(5): 63-70. |
[12] | SHI Yujie,CHAI Beibei,ZHANG Yanxin. Isolation,Identification and Detection of NDM Resistance Genes of Proteus mirabilis and Morganella morganii from Ducks, and in vitro Antibacterial Test of Traditional Chinese Medicine [J]. Animal Husbandry and Feed Science, 2023, 44(5): 121-128. |
[13] | BIAN Kangkun, BAO Yulong, WANG Li. Research Progress in Molecular Regulatory Mechanisms in the Development of Non-alcoholic Fatty Liver Disease and Its Transition to Liver Cancer [J]. Animal Husbandry and Feed Science, 2023, 44(4): 29-40. |
[14] | YANG Hang, LIU Xu. Research Progress in Candidate Genes Related to Meat Quality Traits of Livestock and Poultry [J]. Animal Husbandry and Feed Science, 2023, 44(4): 55-60. |
[15] | LIU Ao, MA Dingyun, TUO Haixin, LI Jing, WANG Chaonan, SUN Mingfei, LIN Xuhui, QI Meng. Isolation,Identification,Virulence Genes Detection and Antimicrobial Resistance Profile of Horse Origin Escherichia coli Isolates from an Equestrian Club in Guangzhou City [J]. Animal Husbandry and Feed Science, 2023, 44(3): 109-115. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||