Animal Husbandry and Feed Science ›› 2023, Vol. 44 ›› Issue (3): 63-68.doi: 10.12160/j.issn.1672-5190.2023.03.009
• Animal Genetics,Reproduction and Breeding • Previous Articles Next Articles
MAO Fei1,CHENG Min1,CHEN Xiaoliang1,DUAN Ran1,SUN Yang1,LI Guojun2,WANG Caiyun1
Received:
2022-12-04
Online:
2023-05-30
Published:
2023-07-12
CLC Number:
MAO Fei, CHENG Min, CHEN Xiaoliang, DUAN Ran, SUN Yang, LI Guojun, WANG Caiyun. Research Progress in Sperm Capacitation Associated Signaling Pathways and Detection Methods in Mammals[J]. Animal Husbandry and Feed Science, 2023, 44(3): 63-68.
[1] | CHANG M C. Fertilizing capacity of spermatozoa deposited into the fallopian tubes[J]. Nature, 1951, 168(4277):697-698. |
[2] |
AUSTIN C R. Observations on the penetration of the sperm in the mammalian egg[J]. Australian Journal of Scientific Research Ser B: Biological Sciences, 1951, 4(4):581-596.
doi: 10.1071/bi9510581 pmid: 14895481 |
[3] |
JIN S K, YANG W X. Factors and pathways involved in capacitation: How are they regulated?[J]. Oncotarget, 2017, 8(2):3600-3627.
doi: 10.18632/oncotarget.v8i2 |
[4] |
TAKEI G L, TOURZANI D A, PAUDEL B, et al. Activation of cAMP-dependent phosphorylation pathways is independent of ROS production during mouse sperm capacitation[J]. Molecular Reproduction and Development, 2021, 88(8):544-557.
doi: 10.1002/mrd.23524 pmid: 34318548 |
[5] |
NARESH S, ATREJA S K. The protein tyrosine phosphorylation during in vitro capacitation and cryopreservation of mammalian spermatozoa[J]. Cryobiology, 2015, 70(3):211-216.
doi: 10.1016/j.cryobiol.2015.03.008 |
[6] | STIVAL C, PUGA M L D, PAUDEL B, et al. Sperm capacitation and acrosome reaction in mammalian sperm[J]. Advances in Anatomy, Embryology, and Cell Biology, 2016, 220:93-106. |
[7] |
GADELLA B M, BOERKE A. An update on post-ejaculatory remodeling of the sperm surface before mammalian fertilization[J]. Theriogenology, 2016, 85(1):113-124.
doi: 10.1016/j.theriogenology.2015.07.018 pmid: 26320574 |
[8] |
ZALAZAR L, STIVAL C, NICOLLI A R, et al. Male decapacitation factor SPINK3 blocks membrane hyperpolarization and calcium entry in mouse sperm[J]. Frontiers in Cell and Developmental Biology, 2020, 8:575126.
doi: 10.3389/fcell.2020.575126 |
[9] |
LEFIÈVRE L, JHA K N, DE LAMIRANDE E, et al. Activation of protein kinase A during human sperm capacitation and acrosome reaction[J]. Journal of Andrology, 2002, 23(5):709-716.
pmid: 12185106 |
[10] |
BREITBART H, ROTMAN T, RUBINSTEIN S, et al. Role and regulation of PI3K in sperm capacitation and the acrosome reaction[J]. Molecular and Cellular Endocrinology, 2010, 314(2):234-238.
doi: 10.1016/j.mce.2009.06.009 pmid: 19560510 |
[11] | 候振. 水牛精子获能前后蛋白质组学初步研究[D]. 南宁: 广西大学, 2019. |
[12] |
LAWSON C, GOUPIL S, LECLERC P. Increased activity of the human sperm tyrosine kinase SRC by the cAMP-dependent pathway in the presence of calcium[J]. Biology of Reproduction, 2008, 79(4):657-666.
doi: 10.1095/biolreprod.108.070367 pmid: 18562702 |
[13] |
MITCHELL L A, NIXON B, BAKER M A, et al. Investigation of the role of SRC in capacitation-associated tyrosine phosphorylation of human spermatozoa[J]. Molecular Human Reproduction, 2008, 14(4):235-243.
doi: 10.1093/molehr/gan007 pmid: 18245108 |
[14] |
KUMARESAN A, JOHANNISSON A, HUMBLOT P, et al. Oviductal fluid modulates the dynamics of tyrosine phosphorylation in cryopreserved boar spermatozoa during capacitation[J]. Molecular Reproduction and Development, 2012, 79(8):525-540.
doi: 10.1002/mrd.22058 pmid: 22674908 |
[15] |
GANGWAR D K, ATREJA S K. Signalling events and associated pathways related to the mammalian sperm capacitation[J]. Reproduction in Domestic Animals, 2015, 50(5):705-711.
doi: 10.1111/rda.12541 pmid: 26294224 |
[16] |
GUÉRIN P, FERRER M, FONTBONNE A, et al. In vitro capacitation of dog spermatozoa as assessed by chlortetracycline staining[J]. Theriogenology, 1999, 52(4):617-628.
doi: 10.1016/S0093-691X(99)00157-0 |
[17] |
MITCHELL L A, NIXON B, AITKEN R J. Analysis of chaperone proteins associated with human spermatozoa during capacitation[J]. Molecular Human Reproduction, 2007, 13(9):605-613.
doi: 10.1093/molehr/gam043 pmid: 17595329 |
[18] | 胡志红. 大鼠附睾特异性基因ESc-615和HongrES1的研究[D]. 上海: 中国科学院研究生院(上海生命科学研究院), 2002. |
[19] |
WEIGEL MUÑOZ M, BATTISTONE M A, CARVAJAL G, et al. Influence of the genetic background on the reproductive phenotype of mice lacking cysteine-rich secretory protein 1 (CRISP1)[J]. Biology of Reproduction, 2018, 99(2):373-383.
doi: 10.1093/biolre/ioy048 pmid: 29481619 |
[20] | 陈云蕾. NYD-SP27基因对绵羊精液品质及精子信号通路的影响[D]. 石河子: 石河子大学, 2019. |
[21] |
MIZRAHI R, BREITBART H. Mitochondrial PKA mediates sperm motility[J]. Biochimica et Biophysica Acta, 2014, 1840(12):3404-3412.
doi: 10.1016/j.bbagen.2014.09.005 pmid: 25219457 |
[22] |
WERTHEIMER E, KRAPF D, DE LA VEGA-BELTRAN J L, et al. Compartmentalization of distinct cAMP signaling pathways in mammalian sperm[J]. Journal of Biological Chemistry, 2013, 288(49):35307-35320.
doi: 10.1074/jbc.M113.489476 pmid: 24129574 |
[23] |
LEFIÈVRE L, DE LAMIRANDE E, PHD C G. The cyclic GMP-specific phosphodiesterase inhibitor, sildenafil, stimulates human sperm motility and capacitation but not acrosome reaction[J]. Journal of Andrology, 2000, 21(6):929-937.
pmid: 11105920 |
[24] |
HARRISON R A P, MILLER N G A. cAMP-dependent protein kinase control of plasma membrane lipid architecture in boar sperm[J]. Molecular Reproduction and Development, 2000, 55(2):220-228.
doi: 10.1002/(SICI)1098-2795(200002)55:2<220::AID-MRD12>3.0.CO;2-I pmid: 10618662 |
[25] |
PINI T, DE GRAAF S P, DRUART X, et al. Binder of Sperm Proteins 1 and 5 have contrasting effects on the capacitation of ram spermatozoa[J]. Biology of Reproduction, 2018, 98(6):765-775.
doi: 10.1093/biolre/ioy032 pmid: 29415221 |
[26] |
FLESCH F M, BROUWERS J F, NIEVELSTEIN P F, et al. Bicarbonate stimulated phospholipid scrambling induces cholesterol redistribution and enables cholesterol depletion in the sperm plasma membrane[J]. Journal of Cell Science, 2001, 114(Pt 19):3543-3555.
doi: 10.1242/jcs.114.19.3543 pmid: 11682613 |
[27] |
BROMFIELD E G, AITKEN R J, GIBB Z, et al. Capacitation in the presence of methyl-β-cyclodextrin results in enhanced zona pellucida-binding ability of stallion spermatozoa[J]. Reproduction, 2013, 147(2):153-166.
doi: 10.1530/REP-13-0393 |
[28] |
ASQUITH K L, BALEATO R M, MCLAUGHLIN E A, et al. Tyrosine phosphorylation activates surface chaperones facilitating sperm-zona recognition[J]. Journal of Cell Science, 2004, 117(Pt 16):3645-3657.
doi: 10.1242/jcs.01214 pmid: 15252132 |
[29] |
ARCELAY E, SALICIONI A M, WERTHEIMER E, et al. Identification of proteins undergoing tyrosine phosphorylation during mouse sperm capacitation[J]. The International Journal of Developmental Biology, 2008, 52(5/6):463-472.
doi: 10.1387/ijdb.072555ea |
[30] |
JIMÉNEZ I, GONZÁLEZ-MÁRQUEZ H, ORTIZ R, et al. Changes in the distribution of lectin receptors during capacitation and acrosome reaction in boar spermatozoa[J]. Theriogenology, 2003, 59(5/6):1171-1180.
doi: 10.1016/S0093-691X(02)01175-5 |
[31] |
AITKEN R J, BRINDLE J P. Andrology: Analysis of the ability of three probes targeting the outer acrosomal membrane or acrosomal contents to detect the acrosome reaction in human spermatozoa[J]. Human Reproduction, 1993, 8(10):1663-1669.
doi: 10.1093/oxfordjournals.humrep.a137910 pmid: 8300825 |
[32] |
MARTIN-HIDALGO D, GIL M C, HURTADO DE LLERA A, et al. Boar sperm hyperactivated motility is induced by temperature via an intracellular calcium-dependent pathway[J]. Reproduction, Fertility, and Development, 2018, 30(11):1462-1471.
doi: 10.1071/RD17549 |
[33] |
SCHMIDT H, KAMP G. Induced hyperactivity in boar spermatozoa and its evaluation by computer-assisted sperm analysis[J]. Reproduction, 2004, 128(2):171-179.
doi: 10.1530/rep.1.00153 pmid: 15280556 |
[1] | LU Ya′nan, DING Wenli, YUE Taojing, XU Bowen, HUANG Shucheng. Recent Progress in the Roles of Integrin in Regulating Bone Health in Livestock and Poultry via PI3K/Akt Signaling Pathway [J]. Animal Husbandry and Feed Science, 2024, 45(1): 120-128. |
[2] | WEI Yuanyuan, Hongmei, WANG Haisheng. Transcriptome Sequencing Analysis Reveals the Possible Therapeutic Mechanisms of a Traditional Mongolian Medicine Honghua Qinggan 13 Flavor Pills in CCl4 Induced Intestinal Injury in Mice [J]. Animal Husbandry and Feed Science, 2023, 44(6): 13-21. |
[3] | WANG Jingran, LI Pengfei, LIU Miao, TAO Yanlin, LIU Yanan, ZHU Shufen. Advances in Respiratory Diseases and Respiratory Tract Micro-ecology [J]. Animal Husbandry and Feed Science, 2023, 44(5): 30-38. |
[4] | BIAN Kangkun, BAO Yulong, WANG Li. Research Progress in Molecular Regulatory Mechanisms in the Development of Non-alcoholic Fatty Liver Disease and Its Transition to Liver Cancer [J]. Animal Husbandry and Feed Science, 2023, 44(4): 29-40. |
[5] | KONG Deqing, QIN Qing, ZHANG Chongyan, LIU Zhichen, XU Xiaolong, LAN Mingxi, WANG Yichuan, ZHANG Jingwen, ZHAO Dan, WANG Zhixin, LI Jinquan, LIU Zhihong. Research Progress in Different Exogenous Substances Affecting Muscle Fiber Development [J]. Animal Husbandry and Feed Science, 2023, 44(3): 55-62. |
[6] | LIN Ya-nan, ZHAO Yuan, SU Shao-feng, ZHAO Jun-li, LI Ya-jing, TAO Jin-shan, ZHANG Jian-qiang, WENG Ya-juan, WU Hui, WANG Xiu-mei, ZHAO Yi-ping. Characterization of mRNA Relative Expression Levels of NF-κB Signaling Pathway Associated Genes in Maternal and Fetal Gastrointestinal Tracts of Mongolian Horse [J]. Animal Husbandry and Feed Science, 2022, 43(5): 79-86. |
[7] | Shana, KANG Bo-yang, ZHANG Xin-xin, DU Lin, FENG Xiao-hui, LIU Guang-hua, DI Cai-xia, GAO Tian-yun. Development of a Liquid Chromatography-tandem Mass Spectrometry(LC-MS/MS)Method for Detection of Colistin A and Colistin B in Mutton [J]. Animal Husbandry and Feed Science, 2021, 42(5): 79-84. |
[8] | MA Chun-li, WANG Li, WANG Ling-hong, DONG Chao, PAN Hai-ting, BAO Yu-long. RNA-seq Analysis Reveals Novel Genes and Signaling Pathways Associated with APAP-induced Acute Liver Injury in Mice [J]. Animal Husbandry and Feed Science, 2021, 42(4): 1-6. |
[9] | ZHANG Xin-zhuang, CAO Di, Gerelchimeg, Manglai. Research Advances on Molecular Regulatory Mechanisms of Oxidative Stress and Nutritional Strategies in Livestock and Poultry Production [J]. Animal Husbandry and Feed Science, 2021, 42(4): 29-36. |
[10] | ZHANG Chao-dong, CAO Qin-qin, XU Ting-ting, LIN Lu-xi, YUE Ke, ZHENG Jing-jing, HUANG Shu-cheng. Effects of Total Flavonoids from Rhizoma Drynariae on Bone Metabolism and Action Mechanisms [J]. Animal Husbandry and Feed Science, 2021, 42(4): 118-123. |
[11] | WU Hai-qing, MA Yue-jun, Wudubala, Gaowa, LI Yu-rong. Mining of Cashmere Yield Associated Genes in Alpas Cashmere Goats [J]. Animal Husbandry and Feed Science, 2020, 41(1): 34-41. |
[12] | TU Di, WU Ying-xin, XIONG Kuan-kuan, YANG Ling-chen. Research Progress on Detection Methods for T-2 Toxin and HT-2 Toxin [J]. Animal Husbandry and Feed Science, 2019, 40(8): 17-22. |
[13] | . Research Progress on Autophagy Detection Methods [J]. Animal Husbandry and Feed Science, 2017, 38(7): 98-98. |
[14] | . Research Progress on Detection Methods of Protein in Feed [J]. Animal Husbandry and Feed Science, 2017, 38(6): 38-38. |
[15] | . Establishment of a PCR Assay for Detection of Molds in Dried Meat Products [J]. Animal Husbandry and Feed Science, 2016, 37(3): 49-49. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 152
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 131
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||