[1] |
CHANG M C. Fertilizing capacity of spermatozoa deposited into the fallopian tubes[J]. Nature, 1951, 168(4277):697-698.
|
[2] |
AUSTIN C R. Observations on the penetration of the sperm in the mammalian egg[J]. Australian Journal of Scientific Research Ser B: Biological Sciences, 1951, 4(4):581-596.
doi: 10.1071/bi9510581
pmid: 14895481
|
[3] |
JIN S K, YANG W X. Factors and pathways involved in capacitation: How are they regulated?[J]. Oncotarget, 2017, 8(2):3600-3627.
doi: 10.18632/oncotarget.v8i2
|
[4] |
TAKEI G L, TOURZANI D A, PAUDEL B, et al. Activation of cAMP-dependent phosphorylation pathways is independent of ROS production during mouse sperm capacitation[J]. Molecular Reproduction and Development, 2021, 88(8):544-557.
doi: 10.1002/mrd.23524
pmid: 34318548
|
[5] |
NARESH S, ATREJA S K. The protein tyrosine phosphorylation during in vitro capacitation and cryopreservation of mammalian spermatozoa[J]. Cryobiology, 2015, 70(3):211-216.
doi: 10.1016/j.cryobiol.2015.03.008
|
[6] |
STIVAL C, PUGA M L D, PAUDEL B, et al. Sperm capacitation and acrosome reaction in mammalian sperm[J]. Advances in Anatomy, Embryology, and Cell Biology, 2016, 220:93-106.
|
[7] |
GADELLA B M, BOERKE A. An update on post-ejaculatory remodeling of the sperm surface before mammalian fertilization[J]. Theriogenology, 2016, 85(1):113-124.
doi: 10.1016/j.theriogenology.2015.07.018
pmid: 26320574
|
[8] |
ZALAZAR L, STIVAL C, NICOLLI A R, et al. Male decapacitation factor SPINK3 blocks membrane hyperpolarization and calcium entry in mouse sperm[J]. Frontiers in Cell and Developmental Biology, 2020, 8:575126.
doi: 10.3389/fcell.2020.575126
|
[9] |
LEFIÈVRE L, JHA K N, DE LAMIRANDE E, et al. Activation of protein kinase A during human sperm capacitation and acrosome reaction[J]. Journal of Andrology, 2002, 23(5):709-716.
pmid: 12185106
|
[10] |
BREITBART H, ROTMAN T, RUBINSTEIN S, et al. Role and regulation of PI3K in sperm capacitation and the acrosome reaction[J]. Molecular and Cellular Endocrinology, 2010, 314(2):234-238.
doi: 10.1016/j.mce.2009.06.009
pmid: 19560510
|
[11] |
候振. 水牛精子获能前后蛋白质组学初步研究[D]. 南宁: 广西大学, 2019.
|
[12] |
LAWSON C, GOUPIL S, LECLERC P. Increased activity of the human sperm tyrosine kinase SRC by the cAMP-dependent pathway in the presence of calcium[J]. Biology of Reproduction, 2008, 79(4):657-666.
doi: 10.1095/biolreprod.108.070367
pmid: 18562702
|
[13] |
MITCHELL L A, NIXON B, BAKER M A, et al. Investigation of the role of SRC in capacitation-associated tyrosine phosphorylation of human spermatozoa[J]. Molecular Human Reproduction, 2008, 14(4):235-243.
doi: 10.1093/molehr/gan007
pmid: 18245108
|
[14] |
KUMARESAN A, JOHANNISSON A, HUMBLOT P, et al. Oviductal fluid modulates the dynamics of tyrosine phosphorylation in cryopreserved boar spermatozoa during capacitation[J]. Molecular Reproduction and Development, 2012, 79(8):525-540.
doi: 10.1002/mrd.22058
pmid: 22674908
|
[15] |
GANGWAR D K, ATREJA S K. Signalling events and associated pathways related to the mammalian sperm capacitation[J]. Reproduction in Domestic Animals, 2015, 50(5):705-711.
doi: 10.1111/rda.12541
pmid: 26294224
|
[16] |
GUÉRIN P, FERRER M, FONTBONNE A, et al. In vitro capacitation of dog spermatozoa as assessed by chlortetracycline staining[J]. Theriogenology, 1999, 52(4):617-628.
doi: 10.1016/S0093-691X(99)00157-0
|
[17] |
MITCHELL L A, NIXON B, AITKEN R J. Analysis of chaperone proteins associated with human spermatozoa during capacitation[J]. Molecular Human Reproduction, 2007, 13(9):605-613.
doi: 10.1093/molehr/gam043
pmid: 17595329
|
[18] |
胡志红. 大鼠附睾特异性基因ESc-615和HongrES1的研究[D]. 上海: 中国科学院研究生院(上海生命科学研究院), 2002.
|
[19] |
WEIGEL MUÑOZ M, BATTISTONE M A, CARVAJAL G, et al. Influence of the genetic background on the reproductive phenotype of mice lacking cysteine-rich secretory protein 1 (CRISP1)[J]. Biology of Reproduction, 2018, 99(2):373-383.
doi: 10.1093/biolre/ioy048
pmid: 29481619
|
[20] |
陈云蕾. NYD-SP27基因对绵羊精液品质及精子信号通路的影响[D]. 石河子: 石河子大学, 2019.
|
[21] |
MIZRAHI R, BREITBART H. Mitochondrial PKA mediates sperm motility[J]. Biochimica et Biophysica Acta, 2014, 1840(12):3404-3412.
doi: 10.1016/j.bbagen.2014.09.005
pmid: 25219457
|
[22] |
WERTHEIMER E, KRAPF D, DE LA VEGA-BELTRAN J L, et al. Compartmentalization of distinct cAMP signaling pathways in mammalian sperm[J]. Journal of Biological Chemistry, 2013, 288(49):35307-35320.
doi: 10.1074/jbc.M113.489476
pmid: 24129574
|
[23] |
LEFIÈVRE L, DE LAMIRANDE E, PHD C G. The cyclic GMP-specific phosphodiesterase inhibitor, sildenafil, stimulates human sperm motility and capacitation but not acrosome reaction[J]. Journal of Andrology, 2000, 21(6):929-937.
pmid: 11105920
|
[24] |
HARRISON R A P, MILLER N G A. cAMP-dependent protein kinase control of plasma membrane lipid architecture in boar sperm[J]. Molecular Reproduction and Development, 2000, 55(2):220-228.
doi: 10.1002/(SICI)1098-2795(200002)55:2<220::AID-MRD12>3.0.CO;2-I
pmid: 10618662
|
[25] |
PINI T, DE GRAAF S P, DRUART X, et al. Binder of Sperm Proteins 1 and 5 have contrasting effects on the capacitation of ram spermatozoa[J]. Biology of Reproduction, 2018, 98(6):765-775.
doi: 10.1093/biolre/ioy032
pmid: 29415221
|
[26] |
FLESCH F M, BROUWERS J F, NIEVELSTEIN P F, et al. Bicarbonate stimulated phospholipid scrambling induces cholesterol redistribution and enables cholesterol depletion in the sperm plasma membrane[J]. Journal of Cell Science, 2001, 114(Pt 19):3543-3555.
doi: 10.1242/jcs.114.19.3543
pmid: 11682613
|
[27] |
BROMFIELD E G, AITKEN R J, GIBB Z, et al. Capacitation in the presence of methyl-β-cyclodextrin results in enhanced zona pellucida-binding ability of stallion spermatozoa[J]. Reproduction, 2013, 147(2):153-166.
doi: 10.1530/REP-13-0393
|
[28] |
ASQUITH K L, BALEATO R M, MCLAUGHLIN E A, et al. Tyrosine phosphorylation activates surface chaperones facilitating sperm-zona recognition[J]. Journal of Cell Science, 2004, 117(Pt 16):3645-3657.
doi: 10.1242/jcs.01214
pmid: 15252132
|
[29] |
ARCELAY E, SALICIONI A M, WERTHEIMER E, et al. Identification of proteins undergoing tyrosine phosphorylation during mouse sperm capacitation[J]. The International Journal of Developmental Biology, 2008, 52(5/6):463-472.
doi: 10.1387/ijdb.072555ea
|
[30] |
JIMÉNEZ I, GONZÁLEZ-MÁRQUEZ H, ORTIZ R, et al. Changes in the distribution of lectin receptors during capacitation and acrosome reaction in boar spermatozoa[J]. Theriogenology, 2003, 59(5/6):1171-1180.
doi: 10.1016/S0093-691X(02)01175-5
|
[31] |
AITKEN R J, BRINDLE J P. Andrology: Analysis of the ability of three probes targeting the outer acrosomal membrane or acrosomal contents to detect the acrosome reaction in human spermatozoa[J]. Human Reproduction, 1993, 8(10):1663-1669.
doi: 10.1093/oxfordjournals.humrep.a137910
pmid: 8300825
|
[32] |
MARTIN-HIDALGO D, GIL M C, HURTADO DE LLERA A, et al. Boar sperm hyperactivated motility is induced by temperature via an intracellular calcium-dependent pathway[J]. Reproduction, Fertility, and Development, 2018, 30(11):1462-1471.
doi: 10.1071/RD17549
|
[33] |
SCHMIDT H, KAMP G. Induced hyperactivity in boar spermatozoa and its evaluation by computer-assisted sperm analysis[J]. Reproduction, 2004, 128(2):171-179.
doi: 10.1530/rep.1.00153
pmid: 15280556
|