北方农业学报 ›› 2023, Vol. 51 ›› Issue (2): 126-134.doi: 10.12190/j.issn.2096-1197.2023.02.15

• 水产·农业信息技术 • 上一篇    

深度学习与全景图像技术在植物景观指标量化中的应用研究

王思阳, 路毅   

  1. 东北林业大学,黑龙江 哈尔滨 150000
  • 收稿日期:2023-02-20 出版日期:2023-04-20 发布日期:2023-07-05
  • 通讯作者: 路 毅(1974—),女,副教授,博士,主要从事风景园林工程技术和风景园林规划设计的工作。
  • 作者简介:王思阳(1997—),女,硕士研究生,研究方向为风景园林规划与设计。
  • 基金资助:
    黑龙江省自然科学基金项目(41312602)

Research on the application of deep learning and panoramic imaging technology in plant landscape index quantification

WANG Siyang, LU Yi   

  1. Northeast Forestry University,Harbin 150000,China
  • Received:2023-02-20 Online:2023-04-20 Published:2023-07-05

摘要: 【目的】研究深度学习与全景图像技术在植物景观指标量化中的应用特征,为评价指标的量化提供理论依据。【方法】基于中国知网(CNKI)和Web of Science数据库对植物景观评价进行检索,统计传统植物景观高频评价指标的应用特征,根据是否适于应用深度学习与全景图像技术指标量化进行划分,并分析该技术在其中的应用形式、促进作用及难以操作的原因。【结果】深度学习与全景图像技术在植物景观指标量化中,具有数据收集完整性和数据处理科学性的优化作用;同时该技术简化了繁复的人工操作流程、降低了技术成本、提升了工作效率,在植物景观指标量化中适用性较广。【结论】在适用范围上,深度学习适用性广泛;在适用条件上,大多受制于图像传递信息的局限性,需要传统调研方式进行补足;在未来发展上,深度学习与全景图像技术在植物景观指标量化中依旧存在很多可操作的评价指标有待实践。

关键词: 深度学习, 全景图像技术, 植物景观, 指标量化

Abstract: 【Objective】To study the application characteristics of deep learning and panoramic imaging technology in plant landscape index quantification and provide theoretical basis for the quantification of indexes.【Methods】Based on searches of the plant landscape evaluation in CNKI and Web of Science database,the application characteristics of traditional plant landscape high-frequency evaluation indexes were compiled. Classification was made according to whether it was suitable for applying deep learning and panoramic imaging technology index quantification. The application form,promotion role and reasons for operational challenges of the technology were analyzed.【Results】Deep learning and panoramic imaging technology optimized both the integrity of data collection and scientific of data processing in plant landscape index quantification. At the same time,this technology simplified complex manual operation processes,lowered technical expenses,and improved work efficiency,making it widely applicable in plant landscape index quantification.【Conclusion】In terms of the scope of application,deep learning was highly adaptable. In terms of applicable conditions,most of them were constrained by the limitations of image transmission information,which needed complementation by traditional research methods. In future development,there are still many operational evaluation indexes need to be practiced in plant landscape index quantification by deep learning and panoramic imaging technology.

Key words: Deep learning, Panoramic imaging technology, Plant landscape, Index quantification

中图分类号: 

  • TU986.5