[1] |
TIEMAN D, ZHU G T, RESENDE Jr M F R, et al. A chemical genetic roadmap to improved tomato flavor[J]. Science, 2017, 355(6323):391-394.
doi: 10.1126/science.aal1556
pmid: 28126817
|
[2] |
郑锦荣, 李艳红, 聂俊, 等. 设施樱桃番茄产业概况及研究进展[J]. 广东农业科学, 2020, 47(12):212-220.
|
[3] |
李天华, 孙萌, 娄伟, 等. 采摘机器人分割与识别算法的研究现状[J]. 山东农业科学, 2021, 53(10):140-148.
|
[4] |
刘湘丽. 人工智能时代的工作变化、能力需求与培养[J]. 新疆师范大学学报(哲学社会科学版), 2020, 41(4):97-108.
|
[5] |
李永玉, 赵洪卫, 常冬, 等. 小型西瓜果实成熟度的无损定性判别[J]. 光谱学与光谱分析, 2012, 32(6):1526-1530.
|
[6] |
毕智健, 张若宇, 齐妍杰, 等. 基于机器视觉的番茄成熟度颜色判别[J]. 食品与机械, 2016, 32(12):133-136.
|
[7] |
孙文杰, 牟少敏, 董萌萍, 等. 基于卷积循环神经网络的桃树叶部病害图像识别[J]. 山东农业大学学报(自然科学版), 2020, 51(6):998-1003.
|
[8] |
王明迁, 李丹阳, 郝威凯, 等. 基于HSV颜色模型的图像识别技术研究[J]. 科技资讯, 2020, 18(35):1-2.
|
[9] |
崔卓贤, 张清, 王恩培, 等. 种子分拣机器人图像处理研究[J]. 河北农机, 2020(12):19-20.
|
[10] |
郑远攀, 李广阳, 李晔. 深度学习在图像识别中的应用研究综述[J]. 计算机工程与应用, 2019, 55(12):20-36.
doi: 10.3778/j.issn.1002-8331.1903-0031
|
[11] |
赵梓杉, 秦玉英, 李刚, 等. 基于深度学习的目标检测算法综述[J]. 汽车实用技术, 2021, 46(17):207-209.
|
[12] |
EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The pascal visual object classes(VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2):303-338.
doi: 10.1007/s11263-009-0275-4
|
[13] |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4:Optimal speed and accuracy of object detection[J]. Computer Vision and Pattern Recognition, 2020, 5:1244.
|
[14] |
解尧婷, 张丕状. 基于改进的YOLOv4输电线路小目标检测[J]. 国外电子测量技术, 2021, 40(2):47-51.
|
[15] |
史瑞鹏, 蒋丹妮, 方青. 基于YOLOv4的遥感影像飞机目标检测[J]. 测绘通报, 2021(S1):134-138.
|
[16] |
边坤, 梁慧. 基于机器学习的图案分类研究进展[J]. 图学学报, 2023, 44(3):415-426.
doi: 10.11996/JG.j.2095-302X.2023030415
|
[17] |
张靖祺. 基于机器视觉温室番茄成熟度检测研究[D]. 泰安: 山东农业大学, 2019.
|
[18] |
李国进, 黄晓洁, 李修华. 基于改进YOLOv3的树上成熟芒果检测方法[J]. 沈阳农业大学学报, 2021, 52(1):70-78.
|
[19] |
朱旭, 马淏, 姬江涛, 等. 基于Faster R-CNN的蓝莓冠层果实检测识别分析[J]. 南方农业学报, 2020, 51(6):1493-1501.
|
[20] |
WAN P, TOUDESHKI A, TAN H, et al. A methodology for fresh tomato maturity detection using computer vision[J]. Computers and Electronics in Agriculture, 2018, 146:43-50.
doi: 10.1016/j.compag.2018.01.011
|
[21] |
ZHAO Y S, GONG L, HUANG Y X, et al. Robust tomato recognition for robotic harvesting using feature images fusion[J]. Sensors, 2016, 16(2):173.
doi: 10.3390/s16020173
pmid: 26840313
|
[22] |
AREFI A, MOTLAGH A M, MOLLAZADE K, et al. Recognition and localization of ripen tomato based on machine vision[J]. Australian Journal of Crop Science, 2011, 5(10):1144-1149.
|
[23] |
LIU G, MAO S, KIM J H. A mature-tomato detection algorithm using machine learning and color analysis[J]. Sensors, 2019, 19(9):2023.
doi: 10.3390/s19092023
|
[24] |
NYALALA I, OKINDA C, NYALALA L, et al. Tomato volume and mass estimation using computer vision and machine learning algorithms:Cherry tomato model[J]. Journal of Food Engineering, 2019, 263:288-298.
doi: 10.1016/j.jfoodeng.2019.07.012
|
[25] |
YUAN T, LV L, ZHANG F, et al. Robust cherry tomatoes detection algorithm in greenhouse scene based on SSD[J]. Agriculture, 2020, 10(5):160.
doi: 10.3390/agriculture10050160
|
[26] |
HU C, LIU X, PAN Z, et al. Automatic detection of single ripe tomato on plant combining faster R-CNN and intuitionistic fuzzy set[J]. IEEE Access, 2019, 7:154683-154696.
doi: 10.1109/Access.6287639
|
[27] |
WU J, ZHANG B, ZHOU J, et al. Automatic recognition of ripening tomatoes by combining multi-feature fusion with a bi-layer classification strategy for harvesting robots[J]. Sensors, 2019, 19(3):612.
doi: 10.3390/s19030612
|