北方农业学报 ›› 2018, Vol. 46 ›› Issue (2): 123-123.

• 农业信息技术·农业经济 • 上一篇    下一篇

基于GF-1 WFV数据的河套灌区春小麦长势遥感分析——以临河区为例

乌云德吉;乌兰吐雅;于利峰;许洪滔;包珺玮   

  1. 内蒙古农牧业科学院农牧业经济与信息研究所,内蒙古呼和浩特010031
  • 出版日期:2018-04-20 发布日期:2018-04-20
  • 通讯作者: 乌云德吉
  • 作者简介:乌云德吉(1987-),女(蒙古族),助理研究员,硕士,主要从事农业遥感应用的研究工作。
  • 基金资助:
    内蒙古自治区农牧业科学院青年刨新基金项目(2017QNJJN10、2015CXJJN05)

Analysis of the growth condition of spring wheat in Hetao irrigation district based on GF-1 WFV -taking Linhe district as an example

Wuyundoji,Wulantuya, YU Lifong, XU Hongtao, BAO Junwoi (Agriculture and Animal Husbandry Economics and Information Research Institute,Inner Mongolia Academy of Agricultural & Animal Husbandry Scioncos,Hohhot 010031,China)   

  • Online:2018-04-20 Published:2018-04-20

摘要: 河套蓬区是内蒙古自治区乃至我国的重要蓬溉农业区和绿色农产品基地,其中春小麦是河套罐区的主要粮食作物,对当地农业可持续发展、种植业结构调整有着十分重要的意义。又章用地面实时监测数据结合GF-1卫星影像陕速提取春小麦面积和长势信息的万法,探讨了该万法在巴彦淖尔市临河区农业遥感长势监测中的适用性。利用2017年5月18日的GF-1WFV数据提取了临河区春小麦面积,在确定春小麦空间分布的基础上用NDVI监测作物长势情况,用3期的地面数据和遥感数据构建了研究区内春小麦的长势时间序列,进行了春小麦的长势对比分析。结果表明:临河区春小麦面积提取结果精度达到了93.51%,Kappa系数为0.8053。通过遥感定量评价的结果发现植被指数的增长与地上生物量呈线性增加关系,用时间序列NDVI值代表长势取得了较好的结果,弥补了地面人工目视评价的不足。研究结果证明该万法在河套地区有很好的适用性和较高的推广价值。

Abstract: The Hetao irrigation district has always been an important irrigated agricultural area and green agricultural products base in the Inner Mongolia Autonomous Region even in China. Among those products, the spring wheat is the main food crop of the Hetao irrigation district. Calculating the area, the growth of spring wheat in the Hetao area by remote sensing is essential to master the production accurately and structure adjustment of planting. The method that real-time monitoring data combines with GF-1 satellite image is used to extract spring wheat area and growth information quickly, and the adaptability of this method in monitoring agriculture by remote sensing for Hetao irrigation district was discussed in the paper. Spring wheat area was extracted by GF-1 WFV data on May 18,2017. On the premise of ensuring the spatial distribution of spring wheat, it used NDVI to represent the crop growth situation and used three phases of ground data and remote sensing data to constitute time series of the wheat in the study area. The extraction precision of the area was 93.51% and the Kappa coefficient was 0.805 3. Based on the results of remote sensing quantitative evaluation, the growth of vegetation index was linearly increased with the biomaas in the ground, and made up for the lack of ground artificial visual evaluation. The results showed that the method has good applicability and high promotion value in the Hetao area.

中图分类号: 

  • S512.1