[1] SCHMIDT-ULLRICH R, PAUS R.Molecular principles of hair follicle induction and morphogenesis[J].BioEssays,2005,27(3):247-261. [2] FUCHS E, RAGHAVAN S.Getting under the skin of epidermal morphogenesis[J].Nature Reviews Genetics,2002,3(3):199-209. [3] CAI B J, ZHENG Y P, MA S S, et al.Long non-coding RNA regulates hair follicle stem cell proliferation and differentiation through PI3K/AKT signal pathway[J].Molecular Medicine Reports,2018,17(4):5477-5483. [4] 刘磊,李淑,李福昌. 家兔毛囊生长发育及其营养调控[J].动物营养学报,2022,34(10):6444-6450. [5] HARDY M H, LYNE A G.The pre-natal development of wool follicles in merino sheep[J].Australian Journal of Biological Sciences,1956,9(3):423-441. [6] ZHAO B R, LUO H P, HE J M, et al.Comprehensive transcriptome and methylome analysis delineates the biological basis of hair follicle development and wool-related traits in Merino sheep[J].BMC Biology,2021,19(1):197. [7] LIU Z H, XIAO H M, LI H P, et al.Identification of conserved and novel microRNAs in Cashmere goat skin by deep sequencing[J].PLoS One,2012,7(12):e50001. [8] YUAN C, WANG X L, GENG R Q, et al.Discovery of Cashmere goat (Capra hircus) microRNAs in skin and hair follicles by Solexa sequencing[J].BMC Genomics,2013,14:511. [9] ANDL T, MURCHISON E P, LIU F, et al.The miRNA-processing enzyme dicer is essential for the morphogenesis and maintenance of hair follicles[J].Current Biology,2006,16(10):1041-1049. [10] WU C L, YUAN L, CAO W Z, et al. Regulation of secondary hair follicle cycle in Cashmere goats by miR-877-3p targeting IGFBP5 gene[J].Journal of Animal Science,2023,101:skad314. [11] HU T Y, HUANG S N, LV X Y, et al.miR-143 targeting CUX1 to regulate proliferation of dermal papilla cells in hu sheep[J].Genes,2021,12(12):2017. [12] VELTRI A, LANG C, LIEN W H.Concise review:wnt signaling pathways in skin development and epidermal stem cells[J].Stem Cells,2018,36(1):22-35. [13] NIE Y F, LI S M, ZHENG X T, et al.Transcriptome reveals long non-coding RNAs and mRNAs involved in primary wool follicle induction in carpet sheep fetal skin[J].Frontiers in Physiology,2018,9:446. [14] VAN GENDEREN C, OKAMURA R M, FARIÑAS I, et al. Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice[J].Genes and Development,1994,8(22):2691-2703. [15] MONSIVAIS D, MATZUK M M, PANGAS S A.The TGF-β family in the reproductive tract[J].Cold Spring Harbor Perspectives in Biology,2017,9(10):a022251. [16] TASSEFF R, BHEDA-MALGE A, DICOLANDREA T, et al.Mouse hair cycle expression dynamics modeled as coupled mesenchymal and epithelial oscillators[J].PLoS Computational Biology, 2014, 10(11):e1003914. [17] ZHANG J W, HE X C, TONG W G, et al.Bone morphogenetic protein signaling inhibits hair follicle anagen induction by restricting epithelial stem/progenitor cell activation and expansion[J].Stem Cells,2006,24(12):2826-2839. [18] GLAVIANO A, FOO A S C, LAM H Y, et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer[J].Molecular Cancer,2023,22(1):138. [19] HARDY K M, YATSKIEVYCH T A, KONIECZKA J, et al.FGF signalling through RAS/MAPK and PI3K pathways regulates cell movement and gene expression in the chicken primitive streak without affecting E-cadherin expression[J].BMC Developmental Biology,2011,11:20. [20] WANG X S, CHEN H Y, TIAN R Y, et al.Macrophages induce AKT/β-catenin-dependent Lgr5+ stem cell activation and hair follicle regeneration through TNF[J].Nature Communications,2017,8:14091. [21] DEMEHRI S, KOPAN R.Notch signaling in bulge stem cells is not required for selection of hair follicle fate[J].Development,2009,136(6):891-896. [22] SAKAMOTO K, JIN S P, GOEL S, et al. Disruption of the endopeptidase ADAM10-Notch signaling axis leads to skin dysbiosis and innate lymphoid cell-mediated hair follicle destruction[J].Immunity,2021,54(10):2321-2337.e10. [23] VAUCLAIR S, NICOLAS M, BARRANDON Y, et al.Notch1 is essential for postnatal hair follicle development and homeostasis[J].Developmental Biology,2005,284(1):184-193. [24] PENG H, KAPLAN N, HAMANAKA R B, et al.MicroRNA-31/factor-inhibiting hypoxia-inducible factor 1 nexus regulates keratinocyte differentiation[J].Proceedings of the National Academy of Sciences of USA,2012,109(35):14030-14034. [25] 王小佳,贺建宁,柳楠.EDA基因及其信号通路在动物皮肤毛囊发育中作用研究进展[J].中国畜牧兽医,2015,42(7):1777-1786. [26] 李国强,纪影畅,李宇.毛囊形态发生的分子机制[J].国外医学(皮肤性病学分册),2004(1):38-40. [27] JIANG Y, LIU H T, ZOU Q, et al.miR-29a-5p inhibits prenatal hair placode formation through targeting EDAR by CeRNA regulatory network[J].Frontiers in Cell and Developmental Biology,2022,10:902026. [28] KOWALCZYK-QUINTAS C, SCHNEIDER P. Ectodysplasin A (EDA) - EDA receptor signalling and its pharmacological modulation[J].Cytokine and Growth Factor Reviews,2014,25(2):195-203. [29] ZHANG J J, LIU Y J, CHANG J L, et al.Shh gene regulates the proliferation and apoptosis of dermal papilla cells to affect its differential expression in secondary hair follicle growth cycle of Cashmere goats[J].Animals,2024,14(14):2049. [30] BAO L L, SUN Z J, DANG L, et al.LncRNA RP11-818O24.3 promotes hair-follicle recovery via FGF2-PI3K/Akt signal pathway[J].Cytotechnology,2024,76(4):425-439. [31] TAKAHASHI R, TAKAHASHI G, KAMEYAMA Y, et al.Gender-difference in hair length as revealed by crispr-based production of long-haired mice with dysfunctional FGF5 mutations[J].International Journal of Molecular Sciences,2022,23(19):11855. [32] HAREL S, HIGGINS C A, CERISE J E, et al.Pharmacologic inhibition of JAK-STAT signaling promotes hair growth[J].Science Advances,2015,1(9):e1500973. [33] ABE Y, TANAKA N.Roles of the hedgehog signaling pathway in epidermal and hair follicle development, homeostasis, and cancer[J].Journal of Developmental Biology,2017,5(4):12. [34] SADIER A, VIRIOT L, PANTALACCI S, et al.The ectodysplasin pathway:from diseases to adaptations[J].Trends in Genetics,2014,30(1):24-31. [35] SALIMINEJAD K, KHORRAM KHORSHID H R, SOLEYMANI FARD S, et al. An overview of microRNAs:biology, functions, therapeutics, and analysis methods[J].Journal of Cellular Physiology,2019,234(5):5451-5465. [36] PICKUP M E, HU A H, PATEL H J, et al.microRNA-148a controls epidermal and hair follicle stem/progenitor cells by modulating the activities of ROCK1 and ELF5[J].Journal of Investigative Dermatology,2023,143(3):480-491. [37] AMELIO I, LENA A M, BONANNO E, et al.miR-24 affects hair follicle morphogenesis targeting Tcf-3[J].Cell Death and Disease,2013,4(11):e922. [38] 张桂山,张英楠,杨树宝,等.miR-1-3p对乾华肉用美利奴羊次级毛囊发育相关基因的调控研究[J].家畜生态学报,2023,44(10):9-13. [39] MA T, LI J Y, LI J P, et al.Expression of miRNA-203 and its target gene in hair follicle cycle development of Cashmere goat[J].Cell Cycle,2021,20(2):204-210. [40] DU K T, DENG J Q, HE X G, et al.miR-214 regulates the human hair follicle stem cell proliferation and differentiation by targeting EZH2 and Wnt/β-catenin signaling way in vitro[J].Tissue Engineering and Regenerative Medicine,2018,15(3):341-350. [41] MUTHER C, JOBEILI L, GARION M, et al.An expression screen for aged-dependent microRNAs identifies miR-30a as a key regulator of aging features in human epidermis[J].Aging,2017,9(11):2376-2396. [42] YUAN S K, LI F F, MENG Q Y, et al.Post-transcriptional regulation of keratinocyte progenitor cell expansion, differentiation and hair follicle regression by miR-22[J].PLoS Genetics,2015,11(5):e1005253. [43] 王咏枝,焦志昂,程文轩,等.miRNA-146a抑制凋亡和促进胞外基质合成改善皮肤微环境[J].华夏医学,2024,37(6):1-10. [44] 李心怡,李茜,张伟,等.miR-148b-3p调控瘢痕疙瘩来源的成纤维细胞的机制研究[J].安徽医科大学学报,2023,58(9):1534-1539. [45] LV X Y, GAO W, JIN C Y, et al.Preliminary study on microR-148a and microR-10a in dermal papilla cells of Hu sheep[J].BMC Genetics,2019,20(1):70. [46] 李勤群. 绵羊MIR-148b和MIR-320对毛囊发育调控研究[D].武汉:华中农业大学,2014. [47] YANG W B, LI Q Q, SU B, et al.microRNA-148b promotes proliferation of hair follicle cells by targeting NFAT5[J].Frontiers of Agricultural Science and Engineering,2016,3(1):72. [48] QU H E, WU S F, LI J P, et al.miR-125b regulates the differentiation of hair follicles in Fine-wool Sheep and Cashmere goats by targeting MXD4 and FGFR2[J].Animal Biotechnology,2023,34(2):357-364. [49] WANG H, GUO Y, MI N, et al.miR-101-3p and miR-199b-5p promote cell apoptosis in oral cancer by targeting BICC1[J].Molecular and Cellular Probes,2020,52:101567. |