Animal Husbandry and Feed Science ›› 2022, Vol. 43 ›› Issue (5): 48-54.doi: 10.12160/j.issn.1672-5190.2022.05.008
• Animal Nutrition and Feed Science • Previous Articles Next Articles
DUAN Hong-juan,MENG Gui-zhi,LIU Bao-bao,JIA Jing-ying,MA Yan-fen,MA Yun,CAI Xiao-yan
Received:
2022-03-22
Online:
2022-09-30
Published:
2022-09-21
CLC Number:
DUAN Hong-juan, MENG Gui-zhi, LIU Bao-bao, JIA Jing-ying, MA Yan-fen, MA Yun, CAI Xiao-yan. Advances in Regulative Role of Plant miR159 Targeting MYB Gene Family and Its Cross-kingdom Regulation in Mammalian Physiological Functions[J]. Animal Husbandry and Feed Science, 2022, 43(5): 48-54.
[1] |
张源, 李新月. 脂多糖抑制牙周膜细胞骨唾液酸蛋白表达中微小RNA的筛选与验证[J]. 口腔医学研究, 2020, 36(5):477-480.
doi: 10.13701/j.cnki.kqyxyj.2020.05.018 |
[2] |
LLAVE C, KASSCHAU K D, RECTOR M A, et al. Endogenous and silencing-associated small RNAs in plants[J]. The Plant Cell, 2002, 14(7):1605-1619.
doi: 10.1105/tpc.003210 |
[3] | 王浩. 矮牵牛MIR159基因敲除对生长发育的影响[D]. 重庆: 西南大学, 2019. |
[4] |
CHEN S Y, SU M H, KREMLING K A, et al. Identification of miRNA-eQTLs in maize mature leaf by GWAS[J]. BMC Genomics, 2020, 21(1):689.
doi: 10.1186/s12864-020-07073-0 |
[5] |
YANG Q, LIU S B, HAN X N, et al. Integrated transcriptome and miRNA analysis uncovers molecular regulators of aerial stem-to-rhizome transition in the medical herb Gynostemma pentaphyllum[J]. BMC Genomics, 2019, 20(1):865.
doi: 10.1186/s12864-019-6250-8 pmid: 31730459 |
[6] |
BARRERA-ROJAS C H, OTONI W C, NOGUEIRA F T S. Shaping the root system: The interplay between miRNA regulatory hubs and phytohormones[J]. Journal of Experimental Botany, 2021, 72(20):6822-6835.
doi: 10.1093/jxb/erab299 |
[7] |
GUO H S, XIE Q, FEI J F, et al. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development[J]. The Plant Cell, 2005, 17(5):1376-1386.
doi: 10.1105/tpc.105.030841 |
[8] |
WANG H, LI Y, CHERN M, et al. Suppression of rice miR168 improves yield, flowering time and immunity[J]. Nature Plants, 2021, 7(2):129-136.
doi: 10.1038/s41477-021-00852-x pmid: 33594262 |
[9] |
SONG X W, LI Y, CAO X F, et al. MicroRNAs and their regulatory roles in plant-environment interactions[J]. Annual Review of Plant Biology, 2019, 70:489-525.
doi: 10.1146/annurev-arplant-050718-100334 pmid: 30848930 |
[10] | 胡志刚, 曹俊婷, 张建勤, 等. miRNA对畜禽肌肉生长发育调控的研究进展[J]. 中国兽医学报, 2021, 41(6):1204-1209. |
[11] |
BARTEL D P. MicroRNAs: Genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2):281-297.
doi: 10.1016/s0092-8674(04)00045-5 pmid: 14744438 |
[12] |
ALLEN R S, LI J Y, STAHLE M I, et al. Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family[J]. Proceedings of the National Academy of Sciences, 2007, 104(41):16371-16376.
doi: 10.1073/pnas.0707653104 |
[13] |
KIDNER C A, MARTIENSSEN R A. The developmental role of microRNA in plants[J]. Current Opinion in Plant Biology, 2005, 8(1):38-44.
doi: 10.1016/j.pbi.2004.11.008 pmid: 15653398 |
[14] |
CHAVEZ MONTES R A, ROSAS-CÁRDENAS F F, DE PAOLI E, et al. Sample sequencing of vascular plants demonstrates widespread conservation and divergence of microRNAs[J]. Nature Communications, 2014, 5(1):3322.
doi: 10.1038/ncomms4322 |
[15] |
PALATNIK J F, ALLEN E, WU X L, et al. Control of leaf morphogenesis by microRNAs[J]. Nature, 2003, 425(6955):257-263.
doi: 10.1038/nature01958 |
[16] | 李波娣. 大豆miR159家族的鉴定及miR159e功能初探[D]. 广州: 华南农业大学, 2018. |
[17] | MALLORY A C, VAUCHERET H. Functions of microRNAs and related small RNAs in plants[J]. Nature Genetics, 2006, 38(6):31-36. |
[18] | 杨晶婷, 余艳, 高晓蓉, 等. MYB类转录因子调控植物耐逆机制的研究进展[J]. 杭州师范大学学报(自然科学版), 2021, 20(6):621-627. |
[19] | 王静文, 谭萌萌, 孙绍营, 等. 基于转录组信息的细叶百合MYB转录因子家族分析[J/OL]. 分子植物育种, 2021,1-12 [2021-12-14] https://kns.cnki.net/kcms/detail/46.1068.S.20211213.1536.009.htmlhttps://kns.cnki.net/kcms/detail/46.1068.S.20211213.1536.009.html. |
[20] | 段俊枝, 李莹, 冯丽丽, 等. MYB转录因子在水稻抗逆基因工程中的应用进展[J]. 江苏农业科学, 2021, 49(21):46-53. |
[21] | 葛金涛, 王丽丽, 赵统利, 等. 葡萄miR159家族生物信息学分析及靶基因预测分析[J]. 江西农业学报, 2018, 30(2):21-25. |
[22] |
XUE T, LIU Z H, DAI X H, et al. Primary root growth in Arabidopsis thaliana is inhibited by the miR159 mediated repression of MYB33, MYB65 and MYB101[J]. Plant Science, 2017, 262:182-189.
doi: 10.1016/j.plantsci.2017.06.008 |
[23] |
黎猛, 陈跃, 胡凤荣. miR159-GAMYB途径调控植物生长发育的研究进展[J]. 生物技术通报, 2021, 37(9):234-247.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0028 |
[24] |
ALLEN R S, LI J Y, ALONSO-PERAL M M, et al. MicroR159 regulation of most conserved targets in Arabidopsis has negligible phenotypic effects[J]. Silence, 2010, 1(1):18.
doi: 10.1186/1758-907X-1-18 |
[25] |
LI W F, ZHANG S G, HAN S Y, et al. Regulation of LaMYB33 by miR159 during maintenance of embryogenic potential and somatic embryo maturation in Larix kaempferi (Lamb.) Carr[J]. Plant Cell, Tissue and Organ Culture, 2013, 113(1):131-136.
doi: 10.1007/s11240-012-0233-7 |
[26] |
CSUKASI F, DONAIRE L, CASANAL A, et al. Two strawberry miR159 family members display developmental‐specific expression patterns in the fruit receptacle and cooperatively regulate Fa‐GAMYB[J]. The New Phytologist, 2012, 195(1):47-57.
doi: 10.1111/j.1469-8137.2012.04134.x |
[27] | 蒋有琦. miR159调节植物抗旱分子机理研究[D]. 杭州: 浙江农林大学, 2017. |
[28] |
WANG Y, SUN F, CAO H, et al. TamiR159 directed wheat TaGAMYB cleavage and its involvement in anther development and heat response[J]. PloS One, 2012, 7(11):e48445.
doi: 10.1371/journal.pone.0048445 |
[29] |
LI X Y, BIAN H W, SONG D F, et al. Flowering time control in ornamental gloxinia (Sinningia speciosa) by manipulation of miR159 expression[J]. Annals of Botany, 2013, 111(5):791-799.
doi: 10.1093/aob/mct034 pmid: 23404992 |
[30] |
王梦琦, 解振强, 孙欣, 等. 葡萄miR159及其靶基因VvGAMYB在花发育过程中的作用分析[J]. 园艺学报, 2017, 44(6):1061-1072.
doi: 10.16420/j.issn.0513-353x.2016-0816 |
[31] |
ZHANG Y, ZHANG B, YANG T, et al. The GAMYB-like gene SlMYB33 mediates flowering and pollen development in tomato[J]. Horticulture Research, 2020, 7(1):133.
doi: 10.1038/s41438-020-00366-1 |
[32] | 邓因娇. Sly-miR159a调控番茄果实形状的机理研究[D]. 深圳: 深圳大学, 2020. |
[33] | 张博, 杨正福, LIM K J, 等. 山核桃miR159家族成员进化特性分析及功能研究[J]. 果树学报, 2021, 38(6):884-894. |
[34] |
AYA K, UEGUCHI-TANAKA M, KONDO M, et al. Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB[J]. The Plant Cell, 2009, 21(5):1453-1472.
doi: 10.1105/tpc.108.062935 |
[35] |
TSUJI H, AYA K, UEGUCHI‐TANAKA M, et al. GAMYB controls different sets of genes and is differentially regulated by microRNA in aleurone cells and anthers[J]. The Plant Journal, 2006, 47(3):427-444.
doi: 10.1111/tpj.2006.47.issue-3 |
[36] | 侯丹. 毛竹生殖器官发育相关 miRNA 挖掘与 miR159-GAMYB 途径对花药发育调控研究[D]. 北京: 中国林业科学研究院, 2018. |
[37] |
ZHENG Z H, REICHEL M, DEVESON I, et al. Target RNA secondary structure is a major determinant of miR159 efficacy[J]. Plant Physiology, 2017, 174(3):1764-1778.
doi: 10.1104/pp.16.01898 pmid: 28515145 |
[38] |
ZHENG Z, WANG N, JALAJAKUMARI M, et al. miR159 represses a constitutive pathogen defense response in tobacco[J]. Plant Physiology, 2020, 182(4):2182-2198.
doi: 10.1104/pp.19.00786 pmid: 32041907 |
[39] |
LEI P, QI N W, ZHOU Y, et al. Soybean miR159-GmMYB33 regulatory network involved in gibberellin-modulated resistance to Heterodera glycines[J]. International Journal of Molecular Sciences, 2021, 22(23):13172.
doi: 10.3390/ijms222313172 |
[40] |
AN F M, CHAN M T. Transcriptome-wide characterization of miRNA-directed and non-miRNA-directed endonucleolytic cleavage using Degradome analysis under low ambient temperature in Phalaenopsis aphrodite subsp. formosana[J]. Plant and Cell Physiology, 2012, 53(10):1737-1750.
doi: 10.1093/pcp/pcs118 |
[41] |
ZHAO P P, WANG F P, DENG Y J, et al. Sly‐miR159 regulates fruit morphology by modulating GA biosynthesis in tomato[J]. Plant Biotechnology Journal, 2022, 20(5):833-845.
doi: 10.1111/pbi.v20.5 |
[42] |
LIU N, TU L X, TANG W X, et al. Small RNA and degradome profiling reveals a role for mi RNAs and their targets in the developing fibers of Gossypium barbadense[J]. The Plant Journal, 2014, 80(2):331-344.
doi: 10.1111/tpj.12636 |
[43] |
LUO X Y, GAO Z H, SHI T, et al. Identification of miRNAs and their target genes in peach (Prunus persica L.) using high-throughput sequencing and degradome analysis[J]. PLoS One, 2013, 8(11):e79090.
doi: 10.1371/journal.pone.0079090 |
[44] |
SUN F L, GUO G H, DU J K, et al. Whole-genome discovery of miRNAs and their targets in wheat (Triticum aestivum L.)[J]. BMC Plant Biology, 2014, 14(1):142.
doi: 10.1186/1471-2229-14-142 |
[45] |
ZHAO Y F, WEN H L, TEOTIA S, et al. Suppression of microRNA159 impacts multiple agronomic traits in rice (Oryza sativa L.)[J]. BMC Plant Biology, 2017, 17(1):215.
doi: 10.1186/s12870-017-1171-7 |
[46] |
SINGROHA G, SHARMA P, SUNKUR R. Current status of microRNA‐mediated regulation of drought stress responses in cereals[J]. Physiologia Plantarum, 2021, 172(3):1808-1821.
doi: 10.1111/ppl.v172.3 |
[47] |
MILLAR A A, LOHE A, WONG G. Biology and function of miR159 in plants[J]. Plants, 2019, 8(8):255.
doi: 10.3390/plants8080255 |
[48] | 陈永超, 齐怀廷, 王小晶, 等. 田菁茎瘤固氮根瘤菌对小麦叶组织的促生作用研究[J]. 西北植物学报, 2016, 36(7):1383-1390. |
[49] |
XIA X L, SHAO Y F, JIANG J F, et al. MicroRNA expression profile during aphid feeding in chrysanthemum (Chrysanthemum morifolium)[J]. PLoS One, 2015, 10(12):e0143720.
doi: 10.1371/journal.pone.0143720 |
[50] |
彭廷, 文慧丽, 赵亚帆, 等. 盐、干旱胁迫下水稻相关miRNA的鉴定及表达分析[J]. 华北农学报, 2018, 33(2):20-27.
doi: 10.7668/hbnxb.2018.02.004 |
[51] |
XU F, LIU Q, CHEN L Y, et al. Genome-wide identification of soybean microRNAs and their targets reveals their organ-specificity and responses to phosphate starvation[J]. BMC Genomics, 2013, 14:66.
doi: 10.1186/1471-2164-14-66 pmid: 23368765 |
[52] |
GOCAL G F W, SHELDON C C, GUBLER F, et al. GAMYB-like genes, flowering, and gibberellin signaling in Arabidopsis[J]. Plant Physiology, 2001, 127(4):1682-1693.
doi: 10.1104/pp.010442 |
[53] |
ACHARD P, HERR A, BAULCOMBE D C, et al. Modulation of floral development by a gibberellin-regulated microRNA[J]. Development, 2004, 131(14): 3357-3365.
doi: 10.1242/dev.01206 pmid: 15226253 |
[54] |
ALONSO-PERAL M M, LI J Y, LI Y J, et al. The microRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis[J]. Plant Physiology, 2010, 154(2):757-771.
doi: 10.1104/pp.110.160630 |
[55] |
REYES J L, CHUA N H. ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination[J]. The Plant Journal, 2007, 49(4):592-606.
doi: 10.1111/j.1365-313X.2006.02980.x |
[56] | 张安妮, 曹红星, 陈萍, 等. 小RNA测序揭示miRNAs在油棕合子胚发育中的作用[J]. 热带作物学报, 2022, 43(1):19-26. |
[57] |
DA SILVA E M, SILVA G, BIDOIA D B, et al. microRNA159-targeted SlGAMYB transcription factors are required for fruit set in tomato[J]. The Plant Journal, 2017, 92(1):95-109.
doi: 10.1111/tpj.2017.92.issue-1 |
[58] |
ZHANG L, HOU D, CHEN X, et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: Evidence of cross-kingdom regulation by microRNA[J]. Cell Research, 2012, 22(1):273-274.
doi: 10.1038/cr.2011.174 |
[59] |
CHIN A R, FONG M Y, SOMLO G, et al. Cross-kingdom inhibition of breast cancer growth by plant miR159[J]. Cell Research, 2016, 26(2):217-228.
doi: 10.1038/cr.2016.13 pmid: 26794868 |
[60] |
WEBER J A, BAXTER D H, ZHANG S L, et al. The microRNA spectrum in 12 body fluids[J]. Clinical Chemistry, 2010, 56(11):1733-1741.
doi: 10.1373/clinchem.2010.147405 pmid: 20847327 |
[61] |
MORI M A, LUDWIG R G, GARCIA-MARTIN R, et al. Extracellular miRNAs:From biomarkers to mediators of physiology and disease[J]. Cell Metabolism, 2019, 30(4):656-673.
doi: 10.1016/j.cmet.2019.07.011 |
[62] |
LIU L, LU H, SHI R X, et al. Synergy of peptide-nucleic acid and spherical nucleic acid enabled quantitative and specific detection of tumor exosomal microRNA[J]. Analytical Chemistry, 2019, 91(20):13198-13205.
doi: 10.1021/acs.analchem.9b03622 pmid: 31553171 |
[63] |
LUO Y, WANG P J, WANG X, et al. Detection of dietetically absorbed maize-derived microRNAs in pigs[J]. Scientific Reports, 2017, 7:645.
doi: 10.1038/s41598-017-00488-y pmid: 28381865 |
[64] |
SALEH M C, VAN RIJ R P, HEKELE A, et al. The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing[J]. Nature Cell Biology, 2006, 8(8):793-802.
doi: 10.1038/ncb1439 |
[65] |
DUXBURY M S, ASHLEY S W, WHANG E E. RNA interference: A mammalian SID-1 homologue enhances siRNA uptake and gene silencing efficacy in human cells[J]. Biochemical and Biophysical Research Communications, 2005, 331(2):459-463.
pmid: 15850781 |
[66] |
ELHASSAN M O, CHRISTIE J, DUXBURY M S. Homo sapiens systemic RNA interference-defective-1 transmembrane family member 1 (SIDT1) protein mediates contact-dependent small RNA transfer and microRNA-21-driven chemoresistance[J]. The Journal of Biological Chemistry, 2012, 287(8):5267-5277.
doi: 10.1074/jbc.M111.318865 |
[67] |
CHEN Q, ZHANG F, DONG L, et al. SIDT1-dependent absorption in the stomach mediates host uptake of dietary and orally administered microRNAs[J]. Cell Research, 2021, 31(3):247-258.
doi: 10.1038/s41422-020-0389-3 |
[68] | 彭朦媛, 王颖芳. 植物microRNA跨界调控哺乳动物基因表达研究进展[J]. 广东药科大学学报, 2019, 35(5):714-718. |
[69] |
LIU J C, WANG F, SONG H Z, et al. Soybean-derived gma-miR159a alleviates colon tumorigenesis by suppressing TCF7/MYC in mice[J]. The Journal of Nutritional Biochemistry, 2021, 92:108627.
doi: 10.1016/j.jnutbio.2021.108627 |
[70] |
YU W Y, CAI W, YING H Z, et al. Exogenous plant gma-miR-159a, identified by miRNA library functional screening, ameliorated hepatic stellate cell activation and inflammation via inhibiting GSK-3β-Mediated pathways[J]. Journal of Inflammation Research, 2021, 14:2157-2172.
doi: 10.2147/JIR.S304828 |
[71] | 彭朦媛. 人参水煎剂及其microRNA对气虚疲劳小鼠的干预和跨界调控作用研究[D]. 广州: 广东药科大学, 2020. |
[1] | WU Zi-xian, LI Yun-hua, ZHANG Bin, ZHANG Jun, ZHAO Yan-hong, LIU Jia-sen. Research Advances on Physiological Functions of Platelet-derived Growth Factor A [J]. Animal Husbandry and Feed Science, 2021, 42(4): 49-53. |
[2] | . Physiological Functions and Efficacy of Aloe Components [J]. Animal Husbandry and Feed Science, 2012, 33(7): 8-8. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||