[1] |
AHMAD K H, AHMAD M Z, ALI K J, et al. Crosstalk of liver immune cells and cell death mechanisms in different murine models of liver injury and its clinical relevance[J]. Hepatobiliary and Pancreatic Diseases International, 2017, 16(3):245-256.
doi: 10.1016/S1499-3872(17)60014-6
|
[2] |
NGUYEN-LEFEBVRE A T, AJITH A, PORTIK-DOBOS V, et al. The innate immune receptor TREM-1 promotes liver injury and fibrosis[J]. The Journal of Clinical Investigation, 2018, 128(11):4870-4883.
doi: 10.1172/JCI98156
|
[3] |
赵璐. 新疆北部地区骆驼乳及驼乳粉中营养成分及生物活性研究[D]. 乌鲁木齐: 新疆师范大学, 2017.
|
[4] |
郭建功. 苏尼特驼乳营养成分与活性物质功能研究[D]. 呼和浩特: 内蒙古农业大学, 2009.
|
[5] |
MING L, QIAO X Y, YI L, et al. Camel milk modulates ethanol-induced changes in the gut microbiome and transcriptome in a mouse model of acute alcoholic liver disease[J]. Journal of Dairy Science, 2020, 103(5):3937-3949.
doi: S0022-0302(20)30187-9
pmid: 32171514
|
[6] |
DU D H, LV W T, SU R N, et al. Hydrolyzed camel whey protein alleviated heat stress-induced hepatocyte damage by activated Nrf2/HO-1 signaling pathway and inhibited NF-κB/NLRP3 axis[J]. Cell Stress and Chaperones, 2021, 26(2):387-401.
doi: 10.1007/s12192-020-01184-z
|
[7] |
IBRAHIM H R, ISONO H, MIYATA T. Potential antioxidant bioactive peptides from camel milk proteins[J]. Animal Nutrition, 2018, 4(3):273-280.
doi: 10.1016/j.aninu.2018.05.004
pmid: 30175255
|
[8] |
HOMAYOUNI-TABRIZI M, ASOODEH A, SOLTANI M. Cytotoxic and antioxidant capacity of camel milk peptides: Effects of isolated peptide on superoxide dismutase and catalase gene expression[J]. Journal of Food and Drug Analysis, 2017, 25(3):567-575.
doi: 10.1016/j.jfda.2016.10.014
|
[9] |
孔玉林, 陈玉雯, 闵春燕, 等. 四氯化碳等混合有机溶剂致急性中毒性肝病52例[J]. 中华劳动卫生职业病杂志, 2016, 34(9):701-702.
|
[10] |
ABEDI P, MOHAGHEGH Z, FARAMAZI N, et al. Maternal death of a hemophilic patient due to the inhaling of a mixture of industrial bleach and detergents-A case study[J]. Clinical Case Reports, 2021, 9(1):376-379.
doi: 10.1002/ccr3.3535
pmid: 33489186
|
[11] |
郅音, 宋雅楠, 张苗, 等. 四氯化碳诱导的小鼠急性肝损伤药理作用研究[J]. 中华中医药学刊, 2022, 40(1):107-109,275.
|
[12] |
李梓萌, 张可锋, 朱依谆, 等. 复方叶下珠汤对四氯化碳致急性肝损伤大鼠的保护作用及机制研究[J]. 中药药理与临床, 2020, 36(1):158-163.
|
[13] |
苏德奇, 刘涛, 黄文俊, 等. 骆驼乳对化学性肝损伤保护作用的实验研究[J]. 毒理学杂志, 2013, 27(2):134-136.
|
[14] |
HAMED H, GARGOURI M, BELLASSOUED K, et al. Cardiopreventive effects of camel milk against carbon tetrachloride induced oxidative stress, biochemical and histological alterations in mice[J]. Archives of Physiology and Biochemistry, 2018, 124(3):253-260.
doi: 10.1080/13813455.2017.1395889
pmid: 29108440
|
[15] |
PASCALE A, LABORDE A. Impact of pesticide exposure in childhood[J]. Reviews on Environmental Health, 2020, 35(3):221-227.
doi: 10.1515/reveh-2020-0011
pmid: 32598326
|
[16] |
ANADÓN A, MARTÍNEZ-LARRAÑAGA M R, MARTÍNEZ M A. Use and abuse of pyrethrins and synthetic pyrethroids in veterinary medicine[J]. The Veterinary Journal, 2009, 182(1):7-20.
doi: 10.1016/j.tvjl.2008.04.008
pmid: 18539058
|
[17] |
DEEBA F, RAZA I, MUHAMMAD N, et al. Chlorpyrifos and lambda cyhalothrin-induced oxidative stress in human erythrocytes[J]. Toxicology and Industrial Health, 2017, 33(4):297-307.
doi: 10.1177/0748233716635003
pmid: 27102427
|
[18] |
YAHIA D, ALI M F. Assessment of neurohepatic DNA damage in male Sprague-Dawley rats exposed to organophosphates and pyrethroid insecticides[J]. Environmental Science and Pollution Research, 2018, 25(16):15616-15629.
doi: 10.1007/s11356-018-1776-x
|
[19] |
ABU ZEID E H, EL SHARKAWY N I, MOUSTAFA G G, et al. The palliative effect of camel milk on hepatic CYP1A1 gene expression and DNA damage induced by fenpropathrin oral intoxication in male rats[J]. Ecotoxicology and Environmental Safety, 2021, 207:111296.
doi: 10.1016/j.ecoenv.2020.111296
|
[20] |
张瞭飞, 姜欣, 李一澍, 等. 4-甲基愈创木酚对酒精性肝损伤小鼠的保护作用[J]. 食品与发酵工业, 2021, 47(18):92-98.
|
[21] |
刘国红, 李丽, 李锦, 等. 酒精性肝病发病机制的研究进展[J]. 现代预防医学, 2009, 36(22):4355-4356.
|
[22] |
CHEN Y L, OUYANG X S, HOQUE R, et al. β-hydroxybutyrate protects from alcohol-induced liver injury via a Hcar2-cAMP dependent pathway[J]. Journal of Hepatology, 2018, 69(3):687-696.
doi: S0168-8278(18)32012-9
pmid: 29705237
|
[23] |
GAO B, BATALLER R. Alcoholic liver disease: Pathogenesis and new therapeutic targets[J]. Gastroenterology, 2011, 141(5):1572-1585.
doi: 10.1053/j.gastro.2011.09.002
pmid: 21920463
|
[24] |
MING L, QI B L, HAO S Q, et al. Camel milk ameliorates inflammatory mechanisms in an alcohol-induced liver injury mouse model[J]. Scientific Reports, 2021, 11(1):1-11.
doi: 10.1038/s41598-020-79139-8
|
[25] |
DOU J H, KHAN A, KHAN M Z, et al. Heat stress impairs the physiological responses and regulates genes coding for extracellular exosomal proteins in rat[J]. Genes, 2020, 11(3):306.
doi: 10.3390/genes11030306
|
[26] |
WANG Y, SAELAO P, KERN C, et al. Liver transcriptome responses to heat stress and Newcastle disease virus infection in genetically distinct chicken inbred lines[J]. Genes, 2020, 11(9):1067.
doi: 10.3390/genes11091067
|
[27] |
乌恩吉雅, 杜冬华, 马雪妮, 等. 骆驼乳清蛋白对热应激大鼠肝脏炎症及高迁移率族蛋白B1/Toll样受体4/核转录因子-κB信号通路的调节[J]. 动物营养学报, 2021, 33(10):5809-5816.
doi: 10.3969/j.issn.1006-267x.2021.10.040
|
[28] |
DU D H, LV W T, JING X X, et al. Dietary supplementation of camel whey protein attenuates heat stress-induced liver injury by inhibiting NLRP3 inflammasome activation through the HMGB1/RAGE signalling pathway[J]. Journal of Functional Foods, 2021, 84:104584.
doi: 10.1016/j.jff.2021.104584
|
[29] |
乌恩吉雅, 马雪妮, 杜冬华, 等. 骆驼乳清蛋白对热应激所致大鼠肝氧化损伤的保护作用[J]. 畜牧兽医学报, 2021, 52(9):2642-2649.
|
[30] |
MEENA S, RAJPUT Y S, PANDEY A K, et al. Camel milk ameliorates hyperglycaemia and oxidative damage in type-1 diabetic experimental rats[J]. The Journal of Dairy Research, 2016, 83(3):412-419.
doi: 10.1017/S002202991600042X
|
[31] |
SAMUEL V, SHULMAN G. Mechanisms for insulin resistance: Common threads and missing links[J]. Cell, 2012, 148(5):852-871.
doi: 10.1016/j.cell.2012.02.017
pmid: 22385956
|
[32] |
ASHRAF A, MUDGIL P, PALAKKOTT A, et al. Molecular basis of the anti-diabetic properties of camel milk through profiling of its bioactive peptides on dipeptidyl peptidase IV (DPP-IV) and insulin receptor activity[J]. Journal of Dairy Science, 2021, 104(1):61-77.
doi: 10.3168/jds.2020-18627
pmid: 33162074
|
[33] |
KILARI B P, MUDGIL P, AZIMULLAH S, et al. Effect of camel milk protein hydrolysates against hyperglycemia, hyperlipidemia, and associated oxidative stress in streptozotocin (STZ)-induced diabetic rats[J]. Journal of Dairy Science, 2021, 104(2):1304-1317.
doi: 10.3168/jds.2020-19412
pmid: 33272578
|
[34] |
CHEN J, LINDMARK-MÅNSSON H, GORTON L, et al. Antioxidant capacity of bovine milk as assayed by spectrophotometric and amperometric methods[J]. International Dairy Journal, 2003, 13(12):927-935.
doi: 10.1016/S0958-6946(03)00139-0
|
[35] |
DOU Z H, LIU C, FENG X H, et al. Camel whey protein (CWP) ameliorates liver injury in type 2 diabetes mellitus rats and insulin resistance (IR) in HepG2 cells via activation of the PI3K/Akt signaling pathway[J]. Food and Function, 2022, 13(1):255-269.
doi: 10.1039/D1FO01174J
|