Animal Husbandry and Feed Science ›› 2023, Vol. 44 ›› Issue (1): 38-43.doi: 10.12160/j.issn.1672-5190.2023.01.006
• Animal Nutrition and Feed Science • Previous Articles Next Articles
MA Gui,AN Yan-hao,MA Li-hua,SHA Ping,MA Yan-fen
Received:
2022-11-04
Online:
2023-01-30
Published:
2023-02-14
CLC Number:
MA Gui, AN Yan-hao, MA Li-hua, SHA Ping, MA Yan-fen. Application of Metabonomics in Screening Biomarkers of Fatty Liver in Dairy Cows[J]. Animal Husbandry and Feed Science, 2023, 44(1): 38-43.
[1] |
CARPENTER A J, YLIOJA C M, VARGAS C F, et al. Early postpartum treatment of commercial dairy cows with nonsteroidal antiinflammatory drugs increases whole-lactation milk yield[J]. Journal of Dairy Science, 2016, 99(1):672-679.
doi: 10.3168/jds.2015-10048 |
[2] | 李胜利, 黄文明, 田雨佳, 等. 围产期奶牛能量代谢及调控[C]// 动物营养研究进展(2012年版). 北京: 中国畜牧兽医学会动物营养学分会, 2012:177-183. |
[3] | 何剑斌, 刘明春, 张文亮, 等. 奶牛血液生化指标的检测[J]. 中国兽医杂志, 2005, 41(2):14-17. |
[4] |
SUN X J, ZHAO B S, QU H C, et al. Sera and lungs metabonomics reveals key metabolites of resveratrol protecting against PAH in rats[J]. Biomedicine and Pharmacotherapy, 2021, 133:110910.
doi: 10.1016/j.biopha.2020.110910 pmid: 33378990 |
[5] |
SHI K R, LI R R, XU Z J, et al. Identification of crucial genetic factors, such as PPARγ, that regulate the pathogenesis of fatty liver disease in dairy cows is imperative for the sustainable development of dairy industry[J]. Animals, 2020, 10(4):639.
doi: 10.3390/ani10040639 |
[6] |
SHI K R, NIU F G, ZHANG Q, et al. Identification of whole-genome significant single nucleotide polymorphisms in candidate genes associated with serum biochemical traits in Chinese Holstein cattle[J]. Frontiers in Genetics, 2020, 11(1):163.
doi: 10.3389/fgene.2020.00163 |
[7] |
HU Z Y, YIN Z Y, LIN X Y, et al. Effects of feeding fatty acid calcium and the interaction of forage quality on production performance and biochemical indexes in early lactation cow[J]. Journal of Animal Physiology and Animal Nutrition, 2015, 99(5):899-904.
doi: 10.1111/jpn.12302 pmid: 25816839 |
[8] |
FARID A S, HONKAWA K, FATH E M, et al. Serum paraoxonase-1 as biomarker for improved diagnosis of fatty liver in dairy cows[J]. BMC Veterinary Research, 2013, 9:73.
doi: 10.1186/1746-6148-9-73 pmid: 23578174 |
[9] |
DU X L, SHI Z, PENG Z C, et al. Acetoacetate induces hepatocytes apoptosis by the ROS-mediated MAPKs pathway in ketotic cows[J]. Journal of Cellular Physiology, 2017, 232(12):3296-3308.
doi: 10.1002/jcp.25773 pmid: 28059455 |
[10] | 刘国文, 李心慰, 李小兵, 等. 奶牛生产疾病的早期诊断及群体监测[J]. 中国兽医学报, 2014, 34(9):1544-1550. |
[11] | 何生虎, 晁向阳, 王明成. 奶牛酮病的发病机理研究现状及进展[J]. 草食家畜, 2004(3):15-17. |
[12] |
OSPINA P A, NYDAM D V, STOKOL T, et al. Evaluation of nonesterified fatty acids and beta-hydroxybutyrate in transition dairy cattle in the northeastern United States: Critical thresholds for prediction of clinical diseases[J]. Journal of Dairy Science, 2010, 93(2):546-554.
doi: 10.3168/jds.2009-2277 pmid: 20105526 |
[13] |
BOBE G, YOUNG J W, BEITZ D C. Pathology, etiology, prevention, and treatment of fatty liver in dairy cows[J]. Journal of Dairy Science, 2004, 87(10):3105-3124.
doi: 10.3168/jds.S0022-0302(04)73446-3 |
[14] |
PATTI G J, YANES O, SIUZDAK G. Metabolomics: The apogee of the omics trilogy[J]. Nature Reviews Molecular Cell Biology, 2012, 13(4):263-269.
doi: 10.1038/nrm3314 |
[15] |
OLIVER S G. Yeast as a navigational aid in genome analysis[J]. Microbiology, 1997, 143(5):1483-1487.
doi: 10.1099/00221287-143-5-1483 |
[16] |
WISHART D S. Metabolomics for investigating physiological and pathophysiological processes[J]. Physiological Reviews, 2019, 99(4):1819-1875.
doi: 10.1152/physrev.00035.2018 pmid: 31434538 |
[17] | YU M Q, ZHU Y, CONG Q W, et al. Metabonomics research progress on liver diseases[J]. Canadian Journal of Gastroenterology and Hepatology, 2017, 2017:8467192. |
[18] |
KONG F L, BI Y L, WANG B, et al. Integrating RNA-sequencing and untargeted LC-MS metabolomics to evaluate the effect of lysine deficiency on hepatic functions in Holstein calves[J]. Amino Acids, 2020, 52(5):781-792.
doi: 10.1007/s00726-020-02852-1 pmid: 32372391 |
[19] |
SUN H Z, WANG D M, WANG B, et al. Metabolomics of four biofluids from dairy cows: Potential biomarkers for milk production and quality[J]. Journal of Proteome Research, 2015, 14(2):1287-1298.
doi: 10.1021/pr501305g |
[20] |
KIM H S, KIM E T, EOM J S, et al. Exploration of metabolite profiles in the biofluids of dairy cows by proton nuclear magnetic resonance analysis[J]. PLoS One, 2021, 16(1):e0246290.
doi: 10.1371/journal.pone.0246290 |
[21] |
ZHANG G S, MANDAL R, WISHART D S, et al. A multi-platform metabolomics approach identifies urinary metabolite signatures that differentiate ketotic from healthy dairy cows[J]. Frontiers in Veterinary Science, 2021, 8:595983.
doi: 10.3389/fvets.2021.595983 |
[22] |
WANG H B, HE Y, LI H, et al. Rumen fermentation, intramuscular fat fatty acid profiles and related rumen bacterial populations of Holstein bulls fed diets with different energy levels[J]. Applied Microbiology and Biotechnology, 2019, 103(12):4931-4942.
doi: 10.1007/s00253-019-09839-3 pmid: 31020378 |
[23] |
STARKE A, SCHMIDT S, HAUDUM A, et al. Evaluation of portal blood flow using transcutaneous and intraoperative Doppler ultrasonography in dairy cows with fatty liver[J]. Journal of Dairy Science, 2011, 94(6):2964-2971.
doi: 10.3168/jds.2011-4156 pmid: 21605766 |
[24] |
ZHANG L T, LIU T J, HU C Z, et al. Proteome analysis identified proteins associated with mitochondrial function and inflammation activation crucially regulating the pathogenesis of fatty liver disease[J]. BMC Genomics, 2021, 22(1):640.
doi: 10.1186/s12864-021-07950-2 pmid: 34481473 |
[25] |
DERVISHI E, ZHANG G S, ZWIERZCHOWSKI G, et al. Serum metabolic fingerprinting of pre-lameness dairy cows by GC-MS reveals typical profiles that can identify susceptible cows[J]. Journal of Proteomics, 2020, 213:103620.
doi: 10.1016/j.jprot.2019.103620 |
[26] |
ECKEL E F, ZHANG G, DERVISHI E, et al. Urinary metabolomics fingerprinting around parturition identifies metabolites that differentiate lame dairy cows from healthy ones[J]. Animal, 2020, 14(10):2138-2149.
doi: 10.1017/S1751731120001172 pmid: 32498732 |
[27] |
ZHANG G S, ZWIERZCHOWSKI G, MANDAL R, et al. Serum metabolomics identifies metabolite panels that differentiate lame dairy cows from healthy ones[J]. Metabolomics, 2020, 16(6):73.
doi: 10.1007/s11306-020-01693-z pmid: 32535675 |
[28] |
ZHANG L T, HU C Z, ZHANG X, et al. Protein acetylation in mitochondria plays critical functions in the pathogenesis of fatty liver disease[J]. BMC Genomics, 2020, 21(1):435.
doi: 10.1186/s12864-020-06837-y |
[29] |
ZWIERZCHOWSKI G, ZHANG G S, MANDAL R, et al. Milk metabotyping identifies metabolite alterations in the whole raw milk of dairy cows with lameness[J]. Journal of Agricultural and Food Chemistry, 2020, 68(15):4507-4514.
doi: 10.1021/acs.jafc.9b08312 pmid: 32223231 |
[30] |
ZHANG X, LIU T J, HOU X P, et al. Multi-channel metabolomics analysis identifies novel metabolite biomarkers for the early detection of fatty liver disease in dairy cows[J]. Cells, 2022, 11(18):2883.
doi: 10.3390/cells11182883 |
[31] |
LUO Z Z, SHEN L H, JIANG J, et al. Plasma metabolite changes in dairy cows during parturition identified using untargeted metabolomics[J]. Journal of Dairy Science, 2019, 102(5):4639-4650.
doi: S0022-0302(19)30194-8 pmid: 30827559 |
[32] |
LI H T, DONG K, FANG Q C, et al. High serum level of fibroblast growth factor 21 is an independent predictor of non-alcoholic fatty liver disease: A 3-year prospective study in China[J]. Journal of Hepatology, 2013, 58(3):557-563.
doi: 10.1016/j.jhep.2012.10.029 pmid: 23142063 |
[33] |
BADMAN M K, PISSIOS P, KENNEDY A R, et al. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states[J]. Cell Metabolism, 2007, 5(6):426-437.
doi: 10.1016/j.cmet.2007.05.002 pmid: 17550778 |
[34] | BIONAZ M, CHEN S W, KHAN M J, et al. Functional role of PPARs in ruminants: Potential targets for fine-tuning metabolism during growth and lactation[J]. PPAR Research, 2013, 2013:684159. |
[35] |
SHEN Y Z, CHEN L M, YANG W Z, et al. Exploration of serum sensitive biomarkers of fatty liver in dairy cows[J]. Scientific Reports, 2018, 8:13574.
doi: 10.1038/s41598-018-31845-0 pmid: 30206404 |
[36] | 汪雅哲. 围产期健康奶牛和脂肪肝奶牛血液代谢谱的比较分析[D]. 长春: 吉林大学, 2020. |
[37] |
OTA T, GAYET C, GINSBERG H N. Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents[J]. The Journal of Clinical Investigation, 2008, 118(1):316-332.
doi: 10.1172/JCI32752 |
[38] |
SCHAREN M, SNEDEC T, RIEFKE B, et al. Aspects of transition cow metabolomics-Part Ⅰ:Effects of a metaphylactic butaphosphan and cyanocobalamin treatment on the metabolome in liver, blood, and urine in cows with different liver metabotypes[J]. Journal of Dairy Science, 2021, 104(8):9205-9226.
doi: 10.3168/jds.2020-19055 |
[39] | 张璇. 围产期奶牛脂肪肝疾病诊断的代谢标记物筛选[D]. 泰安: 山东农业大学, 2020. |
[40] |
MAURICE J, MANOUSOU P. Non-alcoholic fatty liver disease[J]. Clinical Medicine, 2018, 18(3):245-250.
doi: 10.7861/clinmedicine.18-3-245 |
[41] |
JI M, JO Y, CHOI S J, et al. Plasma metabolomics and machine learning-driven novel diagnostic signature for non-alcoholic steatohepatitis[J]. Biomedicines, 2022, 10(7):1669.
doi: 10.3390/biomedicines10071669 |
[42] |
FAN Z K, MA W J, ZHANG W, et al. Elevated serum phosphatidylcholine (16∶1/22∶6) levels promoted by fish oil and vitamin D3 are highly correlated with biomarkers of non-alcoholic fatty liver disease in Chinese subjects[J]. Food and Function, 2022, 13(22):11705-11714.
doi: 10.1039/D2FO02349K |
[43] |
CANTÓ C, HOUTKOOPER R H, PIRINEN E, et al. The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity[J]. Cell Metabolism, 2012, 15(6):838-847.
doi: 10.1016/j.cmet.2012.04.022 |
[44] |
GARIANI K, MENZIES K J, RYU D, et al. Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice[J]. Hepatology, 2016, 63(4):1190-1204.
doi: 10.1002/hep.28245 pmid: 26404765 |
[45] |
LEE H J, YANG S J. Nicotinamide riboside regulates inflammation and mitochondrial markers in AML12 hepatocytes[J]. Nutrition Research and Practice, 2019, 13(1):3-10.
doi: 10.4162/nrp.2019.13.1.3 pmid: 30788050 |
[46] |
BROWN K D, MAQSOOD S, HUANG J Y, et al. Activation of SIRT3 by the NAD+ precursor nicotinamide riboside protects from noise-induced hearing loss[J]. Cell Metabolism, 2014, 20(6):1059-1068.
doi: 10.1016/j.cmet.2014.11.003 |
[47] |
ZHOU C C, YANG X, HUA X, et al. Hepatic NAD(+) deficiency as a therapeutic target for non-alcoholic fatty liver disease in ageing[J]. British Journal of Pharmacology, 2016, 173(15):2352-2368.
doi: 10.1111/bph.v173.15 |
[48] | 孙雨航, 夏成, 舒适, 等. 应用iTRAQ-HPLC-MS技术筛选奶牛脂肪肝病尿液蛋白标志物[J]. 畜牧兽医学报, 2014, 45(5):844-852. |
[49] | 李若瑜, 苗宇船, 李明磊, 等. 大鼠非酒精性脂肪肝肝郁脾虚证的尿液代谢组学研究[J]. 中国中医基础医学杂志, 2019, 25(4):467-470. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||