北方农业学报 ›› 2019, Vol. 47 ›› Issue (5): 119-126.doi: 10.3969/j.issn.2096-1197.2019.05.22

• 农业经济·农业信息技术 • 上一篇    下一篇

基于Sentinel-2数据的水稻面积提取方法比较分析

麦丽素1, 乌兰吐雅2   

  1. 1.山东农业大学 资源与环境学院,山东 泰安 271000;
    2.内蒙古自治区农牧业科学院,内蒙古 呼和浩特 010031
  • 收稿日期:2019-09-05 出版日期:2019-10-20 发布日期:2019-12-11
  • 通讯作者: 乌兰吐雅(1970—),女,副研究员,硕士,主要从事农业遥感监测及评价的研究工作。
  • 作者简介:麦丽素(1997—),女,硕士研究生,研究方向为农业遥感监测及分析。
  • 基金资助:
    内蒙古农牧业科学院创新基金项目(2018年CXJJ09)

Contrastive analysis of extraction of rice area classification based on data of Sentinel-2

Mailisu1, Wulantuya2   

  1. 1.College of Resources and Environment,Shandong Agricultural University,Tai′an 271000,China;;
    2.Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences,Hohhot 010031,China
  • Received:2019-09-05 Online:2019-10-20 Published:2019-12-11

摘要: 为了快速获取区域水稻分布信息,奠定农作物遥感监测技术基础,推动中高纬度水稻生长区监测管理水平的提高,文章以内蒙古自治区兴安盟乌兰浩特市为研究区域,选择欧洲航天局发射的Sentinel-2卫星数据,采用2018年9月9日的单时相遥感图像,基于支持向量机法、最大似然法、面向对象分类法,结合目视解译结果对研究区域水稻进行分类识别,分类后分别根据混淆矩阵和地面样方数据验证水稻提取精度。结果表明:在高纬度单季稻生长区,基于混淆矩阵精度评价中最大似然法的总体分类精度最高,为89.35%,分别高于支持向量机法和面向对象分类法4.60,12.45个百分点;基于地面样方数据的精度评价中,最大似然法水稻面积监测的平均精度最高,为85.91%,比支持向量机法和面向对象分类法分别高8.90,12.61个百分点。在水稻收割期,基于Sentinel-2卫星数据的水稻面积提取方法中,最大似然法好于支持向量机法和面向对象分类法。

关键词: 水稻, 支持向量机, 最大似然, 面向对象分类, 分类精度

Abstract: In order to quickly obtain the regional distribution information of rice and lay a technical foundation for crop sensing monitoring,promoting the development of monitoring and management of rice growth areas in the middle and high latitudes,Ulan Hot City of Inner Mongolia Autonomous Region was selected for analysis of the regional application potential of Sentinel-2 data.In this study,the single-temporal remote sensing image on September 9,2018 was used as the best observation phase,and the method of the support vector machine classification was used.The method of maximum likelihood classification and object-oriented method of approaching -K,combined with visual interpretation results were used to classify and recognize the paddy in the whole region.The accuracy of classification was verified by the confusion matrix and ground sample data.In the high latitude growth area of single-cropping rice,the accuracy using the method of maximum likelihood classification(89.35%) was higher than that using support vector machine classification and object-oriented method.It was 4.6% and 12.45% higher,respectively,than the other two ways of classification accuracy.In term of the accuracy of evaluation of rice area monitoring,the average accuracy(85.91%) of maximum likelihood classification was higher than the other methods by 8.90% and 12.61%,respectively.In term of the rice harvest,the methods of rice area extraction based on the data of Sentinel-2,the method of maximum likelihood is better than the method of supporting vector machine and the method of the object-oriented classification.

Key words: Rice, Support vector machine classification, Maximum likelihood classification, Object-oriented method, Classific-ation accuracy

中图分类号: 

  • S511