[1] |
QIN X L, FENG F, LI Y J, et al. Maize yield improvements in China:Past trends and future directions[J]. Plant Breeding, 2016, 135(2):166-176.
doi: 10.1111/pbr.2016.135.issue-2
|
[2] |
周文期, 连晓荣, 刘忠祥, 等. 玉米株高和穗位高的调控机理研究[J]. 分子植物育种, 2021, 19(23):7965-7976.
|
[3] |
YIN X H, MCCLURE M A, JAJA N, et al. In-season prediction of corn yield using plant height under major production systems[J]. Agronomy Journal, 2011, 103(3):923-929.
doi: 10.2134/agronj2010.0450
|
[4] |
史振声, 李海燕, 李凤海, 等. 玉米株高的年际间变化及其与产量的关系研究[J]. 玉米科学, 2013, 21(5):24-29.
|
[5] |
黄中文, 王伟, 徐新娟, 等. 大豆动态株高及其生长速率与产量的相关分析[J]. 河南科技学院学报(自然科学版), 2010, 38(2):16-19.
|
[6] |
SASAKI A, ASHIKARI M, UEGUCHI-TANAKA M, et al. Green revolution:A mutant gibberellin-synthesis gene in rice[J]. Nature, 2002, 416(6882):701-702.
doi: 10.1038/416701a
|
[7] |
董丽, 石海春, 赵长云, 等. 玉米矮秆突变体K718d的遗传鉴定[J]. 华北农学报, 2021, 36(6):71-77.
doi: 10.7668/hbnxb.20192425
|
[8] |
嵇怡, 缪旻珉, 陈学好. 植物矮生性状的分子遗传研究进展[J]. 分子植物育种, 2006, 4(6):753-771.
|
[9] |
马尼奥·卡斯将罗. 适合高产的叶片直立的超矮秆玉米[J]. 河南农业大学学报, 1977(1):69-70.
|
[10] |
田齐建, 乔治军, 董存吉, 等. 玉米矮化育种研究进展及发展前景[J]. 山西农业科学, 2003, 31(2):23-26.
|
[11] |
杨永生. 南矮一号玉米试种表现及栽培要点[J]. 新疆农业科学, 1981, 18(3):11-12.
|
[12] |
何川, 郑祖平, 谢树果, 等. 隐性单基因br-2玉米矮生系的选育[J]. 中国农业科学, 2009, 42(8):2978-2981.
|
[13] |
李钟, 郑祖平, 张国清, 等. 矮生玉米自交系的选育和利用[J]. 玉米科学, 2006, 14(1):76-78.
|
[14] |
崔绍平. 玉米br-2矮生基因型杂交种矮单268的选育[J]. 中国种业, 2014(12):68-69.
|
[15] |
吴涛, 崔绍平. 矮单268玉米的选育概况及栽培技术[J]. 现代农村科技, 2016(7):17.
|
[16] |
姜惟廉, 郭日跻, 刘元芝, 等. 玉米优异核心种质资源多基因矮生系5003及其姊妹系5005创制[J]. 玉米科学, 2013, 21(5):1-5.
|
[17] |
邱正高, 杨华, 袁亮, 等. 一份新选玉米矮秆突变体的鉴定与遗传分析[J]. 华北农学报, 2015, 30(6):112-118.
doi: 10.7668/hbnxb.2015.06.017
|
[18] |
GOODWIN A W, LINDSEY L E, HARRISON S K, et al. Estimating wheat yield with normalized difference vegetation index and fractional green canopy cover[J]. Crop,Forage & Turfgrass Management, 2018, 4(1):1-6.
|
[19] |
张君, 库丽霞, 张伟强, 等. 玉米穗上节间距的QTL定位[J]. 玉米科学, 2010, 18(4):45-48.
|
[20] |
CUI F, LI J, DING A M, et al. Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat[J]. Theoretical and Applied Genetics, 2011, 122(8):1517-1536.
doi: 10.1007/s00122-011-1551-6
pmid: 21359559
|
[21] |
谷风娟. 玉米极低穗位材料EHel节间相关性状的表型鉴定与候选基因发掘[D]. 重庆: 西南大学, 2020.
|
[22] |
张贺通. 玉米株高基因ZmDLE1的精细定位[D]. 武汉: 华中农业大学, 2022.
|
[23] |
陆明洋, 陈春侠, 高岭巍, 等. 玉米矮秆主效 QTL qph1-4 的精细定位[J]. 河南农业大学学报, 2012, 46(3):242-246.
|
[24] |
刘忠祥, 杨梅, 殷鹏程, 等. 玉米株高主效QTL qPH3.2精细定位及遗传效应分析[J]. 作物学报, 2018, 44(9):1357-1366.
doi: 10.3724/SP.J.1006.2018.01357
|
[25] |
尤诗婷, 邓策, 李会敏, 等. 玉米株高和穗位高的QTL定位[J]. 河南农业科学, 2019, 48(6):20-25.
|
[26] |
腾峰. 玉米株高主效QTL qPH3.1的克隆及其功能验证[D]. 武汉: 华中农业大学, 2013.
|
[27] |
杨梅. 玉米株高QTL qPH3.2和qPH3.3的精细定位[D]. 武汉: 华中农业大学, 2017.
|
[28] |
张梦迪, 张晓聪, 李新海, 等. 玉米株高主效QTL qPH2.4的定位分析[J]. 玉米科学, 2020, 28(2):61-68.
|
[29] |
STEIN O L. Rates of leaf initiation in two mutants of Zea mays,dwarf-1 and brachytic-2[J]. American Journal of Botany, 1955, 42(10):885-892.
|
[30] |
BOMMERT P, JE B I, GOLDSHMIDT A, et al. The maize Gα gene COMPACT PLANT2 functions in CLAVATA signalling to control shoot meristem size[J]. Nature, 2013, 502(7472):555-558.
doi: 10.1038/nature12583
|
[31] |
MAKAREVITCH I, THOMPSON A, MUEHLBAUER G J, et al. Brd1 gene in maize encodes a brassinosteroid C-6 oxidase[J]. PLoS One, 2012, 7(1):e30798.
doi: 10.1371/journal.pone.0030798
|
[32] |
LAWIT S J, WYCH H M, XU D P, et al. Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development[J]. Plant and Cell Physiology, 2010, 51(11):1854-1868.
doi: 10.1093/pcp/pcq153
pmid: 20937610
|
[33] |
CASSANI E, BERTOLINI E, BADONE F C, et al. Characterization of the first dominant dwarf maize mutant carrying a single amino acid insertion in the VHYNP domain of the dwarf8 gene[J]. Molecular Breeding, 2009, 24(4):375-385.
doi: 10.1007/s11032-009-9298-3
|
[34] |
BENSEN R J, JOHAL G S, CRANE V C, et al. Cloning and characterization of the maize An1 gene[J]. The Plant Cell, 1995, 7(1):75-84.
|
[35] |
CASTORINA G, PERSICO M, ZILIO M, et al. The maize Lilliputian1(lil 1) gene,encoding a brassinosteroid cytochrome P450 C-6 oxidase,is involved in plant growth and drought response[J]. Annals of Botany, 2018, 122(2):227-238.
doi: 10.1093/aob/mcy047
|
[36] |
CHEN Y, HOU M M, LIU L J, et al. The maize DWARF1 encodes a gibberellin 3-oxidase and is dual localized to the nucleus and cytosol[J]. Plant Physiology, 2014, 166(4):2028-2039.
doi: 10.1104/pp.114.247486
pmid: 25341533
|
[37] |
LI H C, WANG L J, LIU M S, et al. Maize plant architecture is regulated by the ethylene biosynthetic gene ZmACS7[J]. Plant Physiology, 2020, 183(3):1184-1199.
doi: 10.1104/pp.19.01421
|
[38] |
BEST N B, HARTWIG T, BUDKA J, et al. Nana plant2 encodes a maize ortholog of the Arabidopsis brassinosteroid biosynthesis gene DWARF1,identifying developmental interactions between brassinosteroids and gibberellins[J]. Plant Physiology, 2016, 171(4):2633-2647.
doi: 10.1104/pp.16.00399
|
[39] |
BOMMERT P, LUNDE C N, NARDMANN J, et al. Thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase[J]. Development, 2005, 132(6):1235-1245.
doi: 10.1242/dev.01671
|
[40] |
AVILA L M, CERRUDO D, SWANTON C, et al. Brevis plant1,a putative inositol polyphosphate 5-phosphatase,is required for internode elongation in maize[J]. Journal of Experimental Botany, 2016, 67(5):1577-1588.
doi: 10.1093/jxb/erv554
|
[41] |
PHILLIPS K A, SKIRPAN A L, LIU X, et al. Vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize[J]. The Plant Cell, 2011, 23(2):550-566.
doi: 10.1105/tpc.110.075267
pmid: 21335375
|
[42] |
FUJIOKA S, YAMANE H, SPRAY C R, et al. Qualitative and quantitative analyses of gibberellins in vegetative shoots of normal,dwarf-1,dwarf-2,dwarf-3,and dwarf-5 seedlings of Zea mays L.[J]. Plant Physiology, 1988, 88(4):1367-1372.
doi: 10.1104/pp.88.4.1367
|
[43] |
BECRAFT P W, STINARD P S, MCCARTY D R. CRINKLY4:A TNFR-like receptor kinase involved in maize epidermal differentiation[J]. Science, 1996, 273(5280):1406-1409.
doi: 10.1126/science.273.5280.1406
|
[44] |
白丽君, 尹淑霞. 植物矮化突变体的来源及矮化机理研究进展[J]. 生物技术通报, 2014(6):34-39.
|
[45] |
YABUTA T, SUMIKI Y. On the crystal of gibberellin,a substance to promote plant growth[J]. Journal of the Agricultural Chemical Society of Japan, 1938, 14:1526.
|
[46] |
HELLIWELL C A, SULLIVAN J A, MOULD R M, et al. A plastid envelope location of Arabidopsis ent-kaurene oxidase links the plastid and endoplasmic reticulum steps of the gibberellin biosynthesis pathway[J]. The Plant Journal, 2001, 28(2):201-208.
doi: 10.1046/j.1365-313X.2001.01150.x
|
[47] |
AACH H, BODE H K, ROBINSON D G, et al. Ent-Kaurene synthase is located in proplastids of meristematic shoot tissues[J]. Planta, 1997, 202(2):211-219.
doi: 10.1007/s004250050121
|
[48] |
TENG F, ZHAI L H, LIU R X, et al. ZmGA3ox2,a candidate gene for a major QTL,qPH3.1,for plant height in maize[J]. The Plant Journal, 2013, 73(3):405-416.
doi: 10.1111/tpj.2013.73.issue-3
|
[49] |
SUN T P. Gibberellin-GID1-DELLA:A pivotal regulatory module for plant growth and development[J]. Plant Physiology, 2010, 154(2):567-570.
doi: 10.1104/pp.110.161554
|
[50] |
YIN Y H, WANG Z Y, MORA-GARCIA S, et al. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation[J]. Cell, 2002, 109(2):181-191.
doi: 10.1016/s0092-8674(02)00721-3
pmid: 12007405
|
[51] |
IKEDA A, UEGUCHI-TANAKA M, SONODA Y, et al. Slender rice,a constitutive gibberellin response mutant,is caused by a null mutation of the SLR1 gene,an ortholog of the height-regulating gene GAI/RGA/RHT/D8[J]. The Plant Cell, 2001, 13(5):999-1010.
doi: 10.1105/tpc.13.5.999
|
[52] |
李辉, 左钦月, 涂升斌. 油菜素内酯生物合成和代谢研究进展[J]. 植物生理学报, 2015, 51(11):1787-1798.
|
[53] |
BAJGUZ A, TRETYN A. The chemical characteristic and distribution of brassinosteroids in plants[J]. Phytochemistry, 2003, 62(7):1027-1046.
doi: 10.1016/s0031-9422(02)00656-8
pmid: 12591256
|
[54] |
CASTORINA G, CONSONNI G. The role of brassinosteroids in controlling plant height in Poaceae:A genetic perspective[J]. International Journal of Molecular Sciences, 2020, 21(4):1191.
doi: 10.3390/ijms21041191
|
[55] |
SALEHIN M, BAGCHI R, ESTELLE M. SCFTIR1/AFB-based auxin perception:Mechanism and role in plant growth and development[J]. The Plant Cell, 2015, 27(1):9-19.
doi: 10.1105/tpc.114.133744
|
[56] |
MULTANI D S, BRIGGS S P, CHAMBERLIN M A, et al. Loss of an MDR transporter in compact stalks of maize Br2 and sorghum dw3 mutants[J]. Science, 2003, 302(5642):81-84.
doi: 10.1126/science.1086072
pmid: 14526073
|
[57] |
夏慧. GA和其它植物激素的相互作用[J]. 生物技术世界, 2015, 12(8):227.
|
[58] |
LIN H, WANG R X, QIAN Q A, et al. DWARF27,an iron-containing protein required for the biosynthesis of strigolactones,regulates rice tiller bud outgrowth[J]. The Plant Cell, 2009, 21(5):1512-1525.
doi: 10.1105/tpc.109.065987
|
[59] |
刘伯涵. 拟南芥转录因子GIS、GIS2和SPT调控生长发育分子作用机制的初步研究[D]. 杭州: 浙江大学, 2016.
|
[60] |
叶梅荣, 朱昌华, 甘立军, 等. 激素间相互作用对植物茎伸长生长的调控综述[J]. 中国农学通报, 2007, 23(4):228-231.
|
[61] |
TAKAHASHI T, KAKEHI J I. Polyamines:Ubiquitous polycations with unique roles in growth and stress responses[J]. Annals of Botany, 2010, 105(1):1-6.
doi: 10.1093/aob/mcp259
|