北方农业学报 ›› 2023, Vol. 51 ›› Issue (4): 112-121.doi: 10.12190/j.issn.2096-1197.2023.04.14

• 水产 · 农业信息技术 • 上一篇    下一篇

基于GF-6影像的农作物种植结构提取方法研究

包珺玮1,2, 乌兰吐雅1,2, 车有维3, 刘朝晖4, 刘朝霞5   

  1. 1.内蒙古农牧业科学院 农牧业经济与信息研究所,内蒙古 呼和浩特 010031
    2.内蒙古农业遥感工程技术研究中心,内蒙古 呼和浩特 010031
    3.鄂伦春自治旗农牧科技事业发展中心,内蒙古 鄂伦春自治旗 022450
    4.扎兰屯市农村经营服务中心,内蒙古 扎兰屯 162650
    5.扎兰屯市农牧业技术推广中心,内蒙古 扎兰屯 162650
  • 收稿日期:2023-03-17 出版日期:2023-08-20 发布日期:2023-11-07
  • 通讯作者: 乌兰吐雅(1970—),女,研究员,硕士,主要从事农业遥感与GIS应用的研究工作。
  • 作者简介:包珺玮(1987—),男,助理研究员,硕士,主要从事农业遥感的研究工作。
  • 基金资助:
    内蒙古农牧业青年创新基金项目(2021QNJJN12);内蒙古自治区科技计划项目(2021GG0024)

Research on crop planting structure extraction methods based on GF-6 images

BAO Junwei1,2, Wulantuya 1,2, CHE Youwei3, LIU Zhaohui4, LIU Zhaoxia5   

  1. 1. Institute of Agricultural and Animal Husbandry Economy and Information,Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences,Hohhot 010031,China
    2. Inner Mongolia Engineering and Technology Research Center for Agricultural Remote Sensing,Hohhot 010031,China
    3. Oroqen Autonomous Banner Agricultural and Animal Husbandry Science and Technology Development Center,Oroqen Autonomous Banner 022450,China
    4. Zalantun Agricultural Rural Business Center,Zalantun 162650,China
    5. Zalantun Agricultural and Animal Husbandry Technology Promotion Center,Zalantun 162650,China
  • Received:2023-03-17 Online:2023-08-20 Published:2023-11-07

摘要:

【目的】挖掘国产卫星影像数据信息,快速准确地获取农作物的种植结构类型,为优化农业生产布局提供参考。【方法】利用随机森林算法模型,结合样本数据对影像的光谱特征、植被指数特征、纹理特征进行重要性分析,通过评估分类精度获得基于GF-6影像的最优特征组合,并将优选后的特征用于面向对象分类研究(以平滑度0.5、紧致度0.3为参数,10为步长,设置40~140共11种不同分割尺度),以得到研究区主要农作物种植结构的空间分布。【结果】特征优选的方法得到GVI、EVI、Nir、GI、GNDVI和Green特征,能够有效减少农作物分类中的数据冗余,提升分类效率;研究区农田设置的11种分割尺度中,最优分割尺度为100,分割结果保留了地块的完整性并体现了不同农作物类型的异质性;基于面向对象分类方法的分类精度达96.2%,Kappa系数为0.944,相较基于像元的分类精度提升5.3个百分点。【结论】以国产GF-6影像为数据源,采用特征优选的面向对象分类方法能够有效提升分类精度,可作为开展农作物种植结构监测的有效手段。

关键词: GF-6影像, 特征向量, 面向对象, 农作物, 种植结构

Abstract:

【Objective】Mining domestic satellite image data information to rapidly and accurately obtain the types of crop planting structures,to provide references for optimizing agricultural production layout.【Methods】 The random forest algorithm model was used in combination with sample data to analyze the importance of spectral features,vegetation index features,and texture features of the images. The optimal feature combinations based on GF-6 images were acquired by evaluating classification accuracy. The selected features were then used in object-oriented classification research(with smoothness of 0.5 and compactness of 0.3 as parameters and 10 as steps,setting a total of 11 different segmentation scales ranging from 40 to 140),to obtain the spatial distribution of the main crop planting structure in the research area.【Results】The GVI,EVI,Nir,GI,GNDVI,and Green features obtained by feature optimization method could effectively reduce data redundancy in crop classification and improve classification efficiency. Among the 11 segmentation scales set in the research area farmland,the optimal segmentation scale was 100. The segmentation results retained the integrity of the plot and reflected the heterogeneity of different crop types. The classification accuracy based on object-oriented classification method reached 96.2%,with a Kappa coefficient of 0.944,which was 5.3 percentage points higher than pixel based classification accuracy.【Conclusion】Using domestically produced GF-6 images as the data source and employing the feature optimization object-oriented classification method could effectively improve classification accuracy and serve as an effective means for crop planting structure monitoring.

Key words: GF-6 image, Eigenvectors, Object-oriented, Crop, Planting structure

中图分类号: 

  • TP79