Journal of Northern Agriculture ›› 2023, Vol. 51 ›› Issue (5): 23-30.doi: 10.12190/j.issn.2096-1197.2023.05.02
• Molecular biology·Crop genetics and breeding • Previous Articles Next Articles
TANG Lan, WU Yuanqi
Received:
2023-09-13
Online:
2023-10-20
Published:
2024-01-04
CLC Number:
TANG Lan, WU Yuanqi. Research progress of maize dwarf genes and their regulatory mechanisms[J].Journal of Northern Agriculture, 2023, 51(5): 23-30.
[1] |
QIN X L, FENG F, LI Y J, et al. Maize yield improvements in China:Past trends and future directions[J]. Plant Breeding, 2016, 135(2):166-176.
doi: 10.1111/pbr.2016.135.issue-2 |
[2] | 周文期, 连晓荣, 刘忠祥, 等. 玉米株高和穗位高的调控机理研究[J]. 分子植物育种, 2021, 19(23):7965-7976. |
[3] |
YIN X H, MCCLURE M A, JAJA N, et al. In-season prediction of corn yield using plant height under major production systems[J]. Agronomy Journal, 2011, 103(3):923-929.
doi: 10.2134/agronj2010.0450 |
[4] | 史振声, 李海燕, 李凤海, 等. 玉米株高的年际间变化及其与产量的关系研究[J]. 玉米科学, 2013, 21(5):24-29. |
[5] | 黄中文, 王伟, 徐新娟, 等. 大豆动态株高及其生长速率与产量的相关分析[J]. 河南科技学院学报(自然科学版), 2010, 38(2):16-19. |
[6] |
SASAKI A, ASHIKARI M, UEGUCHI-TANAKA M, et al. Green revolution:A mutant gibberellin-synthesis gene in rice[J]. Nature, 2002, 416(6882):701-702.
doi: 10.1038/416701a |
[7] |
董丽, 石海春, 赵长云, 等. 玉米矮秆突变体K718d的遗传鉴定[J]. 华北农学报, 2021, 36(6):71-77.
doi: 10.7668/hbnxb.20192425 |
[8] | 嵇怡, 缪旻珉, 陈学好. 植物矮生性状的分子遗传研究进展[J]. 分子植物育种, 2006, 4(6):753-771. |
[9] | 马尼奥·卡斯将罗. 适合高产的叶片直立的超矮秆玉米[J]. 河南农业大学学报, 1977(1):69-70. |
[10] | 田齐建, 乔治军, 董存吉, 等. 玉米矮化育种研究进展及发展前景[J]. 山西农业科学, 2003, 31(2):23-26. |
[11] | 杨永生. 南矮一号玉米试种表现及栽培要点[J]. 新疆农业科学, 1981, 18(3):11-12. |
[12] | 何川, 郑祖平, 谢树果, 等. 隐性单基因br-2玉米矮生系的选育[J]. 中国农业科学, 2009, 42(8):2978-2981. |
[13] | 李钟, 郑祖平, 张国清, 等. 矮生玉米自交系的选育和利用[J]. 玉米科学, 2006, 14(1):76-78. |
[14] | 崔绍平. 玉米br-2矮生基因型杂交种矮单268的选育[J]. 中国种业, 2014(12):68-69. |
[15] | 吴涛, 崔绍平. 矮单268玉米的选育概况及栽培技术[J]. 现代农村科技, 2016(7):17. |
[16] | 姜惟廉, 郭日跻, 刘元芝, 等. 玉米优异核心种质资源多基因矮生系5003及其姊妹系5005创制[J]. 玉米科学, 2013, 21(5):1-5. |
[17] |
邱正高, 杨华, 袁亮, 等. 一份新选玉米矮秆突变体的鉴定与遗传分析[J]. 华北农学报, 2015, 30(6):112-118.
doi: 10.7668/hbnxb.2015.06.017 |
[18] | GOODWIN A W, LINDSEY L E, HARRISON S K, et al. Estimating wheat yield with normalized difference vegetation index and fractional green canopy cover[J]. Crop,Forage & Turfgrass Management, 2018, 4(1):1-6. |
[19] | 张君, 库丽霞, 张伟强, 等. 玉米穗上节间距的QTL定位[J]. 玉米科学, 2010, 18(4):45-48. |
[20] |
CUI F, LI J, DING A M, et al. Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat[J]. Theoretical and Applied Genetics, 2011, 122(8):1517-1536.
doi: 10.1007/s00122-011-1551-6 pmid: 21359559 |
[21] | 谷风娟. 玉米极低穗位材料EHel节间相关性状的表型鉴定与候选基因发掘[D]. 重庆: 西南大学, 2020. |
[22] | 张贺通. 玉米株高基因ZmDLE1的精细定位[D]. 武汉: 华中农业大学, 2022. |
[23] | 陆明洋, 陈春侠, 高岭巍, 等. 玉米矮秆主效 QTL qph1-4 的精细定位[J]. 河南农业大学学报, 2012, 46(3):242-246. |
[24] |
刘忠祥, 杨梅, 殷鹏程, 等. 玉米株高主效QTL qPH3.2精细定位及遗传效应分析[J]. 作物学报, 2018, 44(9):1357-1366.
doi: 10.3724/SP.J.1006.2018.01357 |
[25] | 尤诗婷, 邓策, 李会敏, 等. 玉米株高和穗位高的QTL定位[J]. 河南农业科学, 2019, 48(6):20-25. |
[26] | 腾峰. 玉米株高主效QTL qPH3.1的克隆及其功能验证[D]. 武汉: 华中农业大学, 2013. |
[27] | 杨梅. 玉米株高QTL qPH3.2和qPH3.3的精细定位[D]. 武汉: 华中农业大学, 2017. |
[28] | 张梦迪, 张晓聪, 李新海, 等. 玉米株高主效QTL qPH2.4的定位分析[J]. 玉米科学, 2020, 28(2):61-68. |
[29] | STEIN O L. Rates of leaf initiation in two mutants of Zea mays,dwarf-1 and brachytic-2[J]. American Journal of Botany, 1955, 42(10):885-892. |
[30] |
BOMMERT P, JE B I, GOLDSHMIDT A, et al. The maize Gα gene COMPACT PLANT2 functions in CLAVATA signalling to control shoot meristem size[J]. Nature, 2013, 502(7472):555-558.
doi: 10.1038/nature12583 |
[31] |
MAKAREVITCH I, THOMPSON A, MUEHLBAUER G J, et al. Brd1 gene in maize encodes a brassinosteroid C-6 oxidase[J]. PLoS One, 2012, 7(1):e30798.
doi: 10.1371/journal.pone.0030798 |
[32] |
LAWIT S J, WYCH H M, XU D P, et al. Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development[J]. Plant and Cell Physiology, 2010, 51(11):1854-1868.
doi: 10.1093/pcp/pcq153 pmid: 20937610 |
[33] |
CASSANI E, BERTOLINI E, BADONE F C, et al. Characterization of the first dominant dwarf maize mutant carrying a single amino acid insertion in the VHYNP domain of the dwarf8 gene[J]. Molecular Breeding, 2009, 24(4):375-385.
doi: 10.1007/s11032-009-9298-3 |
[34] | BENSEN R J, JOHAL G S, CRANE V C, et al. Cloning and characterization of the maize An1 gene[J]. The Plant Cell, 1995, 7(1):75-84. |
[35] |
CASTORINA G, PERSICO M, ZILIO M, et al. The maize Lilliputian1(lil 1) gene,encoding a brassinosteroid cytochrome P450 C-6 oxidase,is involved in plant growth and drought response[J]. Annals of Botany, 2018, 122(2):227-238.
doi: 10.1093/aob/mcy047 |
[36] |
CHEN Y, HOU M M, LIU L J, et al. The maize DWARF1 encodes a gibberellin 3-oxidase and is dual localized to the nucleus and cytosol[J]. Plant Physiology, 2014, 166(4):2028-2039.
doi: 10.1104/pp.114.247486 pmid: 25341533 |
[37] |
LI H C, WANG L J, LIU M S, et al. Maize plant architecture is regulated by the ethylene biosynthetic gene ZmACS7[J]. Plant Physiology, 2020, 183(3):1184-1199.
doi: 10.1104/pp.19.01421 |
[38] |
BEST N B, HARTWIG T, BUDKA J, et al. Nana plant2 encodes a maize ortholog of the Arabidopsis brassinosteroid biosynthesis gene DWARF1,identifying developmental interactions between brassinosteroids and gibberellins[J]. Plant Physiology, 2016, 171(4):2633-2647.
doi: 10.1104/pp.16.00399 |
[39] |
BOMMERT P, LUNDE C N, NARDMANN J, et al. Thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase[J]. Development, 2005, 132(6):1235-1245.
doi: 10.1242/dev.01671 |
[40] |
AVILA L M, CERRUDO D, SWANTON C, et al. Brevis plant1,a putative inositol polyphosphate 5-phosphatase,is required for internode elongation in maize[J]. Journal of Experimental Botany, 2016, 67(5):1577-1588.
doi: 10.1093/jxb/erv554 |
[41] |
PHILLIPS K A, SKIRPAN A L, LIU X, et al. Vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize[J]. The Plant Cell, 2011, 23(2):550-566.
doi: 10.1105/tpc.110.075267 pmid: 21335375 |
[42] |
FUJIOKA S, YAMANE H, SPRAY C R, et al. Qualitative and quantitative analyses of gibberellins in vegetative shoots of normal,dwarf-1,dwarf-2,dwarf-3,and dwarf-5 seedlings of Zea mays L.[J]. Plant Physiology, 1988, 88(4):1367-1372.
doi: 10.1104/pp.88.4.1367 |
[43] |
BECRAFT P W, STINARD P S, MCCARTY D R. CRINKLY4:A TNFR-like receptor kinase involved in maize epidermal differentiation[J]. Science, 1996, 273(5280):1406-1409.
doi: 10.1126/science.273.5280.1406 |
[44] | 白丽君, 尹淑霞. 植物矮化突变体的来源及矮化机理研究进展[J]. 生物技术通报, 2014(6):34-39. |
[45] | YABUTA T, SUMIKI Y. On the crystal of gibberellin,a substance to promote plant growth[J]. Journal of the Agricultural Chemical Society of Japan, 1938, 14:1526. |
[46] |
HELLIWELL C A, SULLIVAN J A, MOULD R M, et al. A plastid envelope location of Arabidopsis ent-kaurene oxidase links the plastid and endoplasmic reticulum steps of the gibberellin biosynthesis pathway[J]. The Plant Journal, 2001, 28(2):201-208.
doi: 10.1046/j.1365-313X.2001.01150.x |
[47] |
AACH H, BODE H K, ROBINSON D G, et al. Ent-Kaurene synthase is located in proplastids of meristematic shoot tissues[J]. Planta, 1997, 202(2):211-219.
doi: 10.1007/s004250050121 |
[48] |
TENG F, ZHAI L H, LIU R X, et al. ZmGA3ox2,a candidate gene for a major QTL,qPH3.1,for plant height in maize[J]. The Plant Journal, 2013, 73(3):405-416.
doi: 10.1111/tpj.2013.73.issue-3 |
[49] |
SUN T P. Gibberellin-GID1-DELLA:A pivotal regulatory module for plant growth and development[J]. Plant Physiology, 2010, 154(2):567-570.
doi: 10.1104/pp.110.161554 |
[50] |
YIN Y H, WANG Z Y, MORA-GARCIA S, et al. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation[J]. Cell, 2002, 109(2):181-191.
doi: 10.1016/s0092-8674(02)00721-3 pmid: 12007405 |
[51] |
IKEDA A, UEGUCHI-TANAKA M, SONODA Y, et al. Slender rice,a constitutive gibberellin response mutant,is caused by a null mutation of the SLR1 gene,an ortholog of the height-regulating gene GAI/RGA/RHT/D8[J]. The Plant Cell, 2001, 13(5):999-1010.
doi: 10.1105/tpc.13.5.999 |
[52] | 李辉, 左钦月, 涂升斌. 油菜素内酯生物合成和代谢研究进展[J]. 植物生理学报, 2015, 51(11):1787-1798. |
[53] |
BAJGUZ A, TRETYN A. The chemical characteristic and distribution of brassinosteroids in plants[J]. Phytochemistry, 2003, 62(7):1027-1046.
doi: 10.1016/s0031-9422(02)00656-8 pmid: 12591256 |
[54] |
CASTORINA G, CONSONNI G. The role of brassinosteroids in controlling plant height in Poaceae:A genetic perspective[J]. International Journal of Molecular Sciences, 2020, 21(4):1191.
doi: 10.3390/ijms21041191 |
[55] |
SALEHIN M, BAGCHI R, ESTELLE M. SCFTIR1/AFB-based auxin perception:Mechanism and role in plant growth and development[J]. The Plant Cell, 2015, 27(1):9-19.
doi: 10.1105/tpc.114.133744 |
[56] |
MULTANI D S, BRIGGS S P, CHAMBERLIN M A, et al. Loss of an MDR transporter in compact stalks of maize Br2 and sorghum dw3 mutants[J]. Science, 2003, 302(5642):81-84.
doi: 10.1126/science.1086072 pmid: 14526073 |
[57] | 夏慧. GA和其它植物激素的相互作用[J]. 生物技术世界, 2015, 12(8):227. |
[58] |
LIN H, WANG R X, QIAN Q A, et al. DWARF27,an iron-containing protein required for the biosynthesis of strigolactones,regulates rice tiller bud outgrowth[J]. The Plant Cell, 2009, 21(5):1512-1525.
doi: 10.1105/tpc.109.065987 |
[59] | 刘伯涵. 拟南芥转录因子GIS、GIS2和SPT调控生长发育分子作用机制的初步研究[D]. 杭州: 浙江大学, 2016. |
[60] | 叶梅荣, 朱昌华, 甘立军, 等. 激素间相互作用对植物茎伸长生长的调控综述[J]. 中国农学通报, 2007, 23(4):228-231. |
[61] |
TAKAHASHI T, KAKEHI J I. Polyamines:Ubiquitous polycations with unique roles in growth and stress responses[J]. Annals of Botany, 2010, 105(1):1-6.
doi: 10.1093/aob/mcp259 |
[1] | WANG Guangjie, HUANG Binxiang, SONG Yao, MIN Kuangnan, LI Shun′ao, GAO Riping, ZHAO Xiling, WANG Jing, REN Yongfeng. Characteristics of leaf air temperature difference and the influencing factors during the critical water demand period of maize in semi-arid sandy areas [J]. Journal of Northern Agriculture, 2023, 51(6): 89-97. |
[2] | WANG Bangtai, YANG Meili, GUO Hua, WANG Jing, WANG Zhihong, LU Hongwei, CHENG Jianmei, QIN Guiwen, CHEN Jiafa. Genome-wide association analysis for maize stem nutritional quality traits and candidate gene selection [J]. Journal of Northern Agriculture, 2023, 51(5): 1-22. |
[3] | JING Xiangzhu, SUN Xia, GUO Yemin, ZHAO Wenping, GUO Zhen, SANG Maosheng. Research progress of spectral imaging technology in maize seed quality detection [J]. Journal of Northern Agriculture, 2023, 51(5): 93-102. |
[4] | ZHAO Li, FAN Mingyuan, XIE Guangming, LU Jingying, ZHANG Qi, SUN Xiaojing, GUO Hongxia, DENG Yan, WANG Chuangyun. Analysis on photosynthetic characteristics,dry matter accumulation,and yield of different spring maize varieties in dryland [J]. Journal of Northern Agriculture, 2023, 51(4): 11-19. |
[5] | PAN Lijie, ZHANG Baolin, LI Ruixin, NIU Panting, GUO Jianpeng, Siqin′gaowa , HE Meiling. Research progress on maize leaf chlorophyll content vertical distribution in different leaf positions [J]. Journal of Northern Agriculture, 2023, 51(4): 28-37. |
[6] | ZHANG Lili, XUE Bingdong, FAN Ye, MO Jiaojiao, ZHAO Xinyu, YANG Hailong, FU Jun, JIANG Ying, QI Hua, WANG Pu. Effects of continuous application of soil conditioner on the growth,development and yield components of maize in acidic soil in the southeastern region of Liaoning [J]. Journal of Northern Agriculture, 2023, 51(4): 38-47. |
[7] | CHENG Zhipeng, ZHANG Chengze, WANG Fugui, WANG Zhen, ZHANG Yuezhong, YAN Liwei, LIANG Hongwei, YANG Zhihong, GAO Julin, WANG Zhigang. Effects of tillage methods on Inner Mongolia dry farming regions soil moisture,temperature and maize yield [J]. Journal of Northern Agriculture, 2023, 51(2): 22-32. |
[8] | ZHANG Hao, GAO Julin, YU Xiaofang, MA Daling, HU Shuping. Effects of deep ploughing straw returning on root morphology and yield of maize in saline-alkali soil [J]. Journal of Northern Agriculture, 2023, 51(1): 1-15. |
[9] | YIN Jianjun, GUO Qingrui, GUO Fengqin, ZHANG Xiaojuan, WANG Li. Effects of wide and narrow row planting on photosynthetic characteristics,yield and quality of silage maize [J]. Journal of Northern Agriculture, 2023, 51(1): 16-21. |
[10] | HAN Ping′an, CHANG Yue, TANG Kuan′gang, LI Xiaodong, WANG Liwei, LIANG Yahui, YANG Jing, SHI Haibo, WU Xinrong. Study on agrobacterium mediated transfer of CP4-EPSPS gene into maize inbred line B73 [J]. Journal of Northern Agriculture, 2023, 51(1): 31-37. |
[11] | CHAI Wenbo, LI Shufen, LI Hongtao, XU Hanyuan, ZHU Qing, WANG Jun. Analysis of Huang-Huai-Hai maize heterotic pattern based on SSR molecular marker technology [J]. Journal of Northern Agriculture, 2022, 50(6): 17-24. |
[12] | QIU Guilan, LI Yan, LI Hongmei, LUO Xi, MA Xiaoling, HE Liqun, HU Meilin, ZHAO Houjuan, DU Lin, WU Yuanqi, TANG Haitao. Research progress of genes related to photoperiodic pathway in maize [J]. Journal of Northern Agriculture, 2022, 50(5): 19-23. |
[13] | RONG Meiren, HU Shuping, GAO Julin, WANG Fugui, YU Xiaofang, SUN Jiying, Qinggeer, QU Jiawei, MA Daling, LIANG Hongwei, WANG Zhigang. Effects of sowing date on grain harvesting spring maize growth,development,and stage heat resource matching [J]. Journal of Northern Agriculture, 2022, 50(3): 32-43. |
[14] | LIANG Hongwei, SHI Haibo, ZHANG Jing, PAN Tianzun, HOU Xuguang, LU Yuhong, WEI Shuli, ZHAO Xiaoyu, ZHAO Ruixia, WANG Zhigang. Effects of nitrogen fertilizer and density interaction on spring maize inferior kernels characteristics [J]. Journal of Northern Agriculture, 2022, 50(2): 1-8. |
[15] | ZHANG Qingwang, SUN Jiyin, GAO Julin, LIU Jian, ZHANG Yuezhong, YU Xiaofang, WANG Zhigang, HU Shuping, BAO Haizhu, HUANG Zhiyuan. Effects of different straw returning methods on soil structure and water physical characteristics in the irrigation area of Tumechuan plain [J]. Journal of Northern Agriculture, 2022, 50(2): 9-17. |
|