畜牧与饲料科学 ›› 2023, Vol. 44 ›› Issue (1): 64-70.doi: 10.12160/j.issn.1672-5190.2023.01.010
潘杨溯1,贺杨1,李永香1,曹振辉1,黄英1,安清聪1,张春勇1,赵素梅1,胡洪2,潘洪彬1
收稿日期:
2022-10-15
出版日期:
2023-01-30
发布日期:
2023-02-14
通讯作者:
潘洪彬(1974—),男,教授,博士,主要研究方向为动物营养与饲料。
作者简介:
潘杨溯(2000—),女,硕士研究生,主要研究方向为畜牧学。
基金资助:
PAN Yang-su1,HE Yang1,LI Yong-xiang1,CAO Zhen-hui1,HUANG Ying1,AN Qing-cong1,ZHANG Chun-yong1,ZHAO Su-mei1,HU Hong2,PAN Hong-bin1
Received:
2022-10-15
Online:
2023-01-30
Published:
2023-02-14
摘要:
微生态制剂作为一种安全、绿色的新型饲料添加剂,已被广泛应用于畜牧业生产。综述了微生态制剂在畜禽养殖业中的应用研究进展,阐述了副拟杆菌作为下一代新型益生菌添加剂产品在畜牧业中的应用潜力,以期为研发新型畜禽用微生态制剂提供新思路。
中图分类号:
潘杨溯, 贺杨, 李永香, 曹振辉, 黄英, 安清聪, 张春勇, 赵素梅, 胡洪, 潘洪彬. 微生态制剂在畜牧业生产中的应用研究展望[J]. 畜牧与饲料科学, 2023, 44(1): 64-70.
PAN Yang-su, HE Yang, LI Yong-xiang, CAO Zhen-hui, HUANG Ying, AN Qing-cong, ZHANG Chun-yong, ZHAO Su-mei, HU Hong, PAN Hong-bin. Research Prospect in Application of Microecological Preparations in Animal Husbandry[J]. Animal Husbandry and Feed Science, 2023, 44(1): 64-70.
[1] | 戴维, 班博, 方热军. 微生态制剂的作用机理及其在畜牧生产方面的应用[J]. 湖南饲料, 2020(3):30-32. |
[2] | 李慧敏, 刘军, 李洪民, 等. 微生态制剂在断奶仔猪日粮中的应用研究进展[J]. 中国饲料, 2022(1):6-9. |
[3] |
WILLIAMS N T. Probiotics[J]. American Journal of Health-system Pharmacy, 2010, 67(6):449-458.
doi: 10.2146/ajhp090168 pmid: 20208051 |
[4] |
OZEN M, DINLEYICI E C. The history of probiotics: The untold story[J]. Beneficial Microbes, 2015, 6(2):159-165.
doi: 10.3920/BM2014.0103 pmid: 25576593 |
[5] |
SYNGAI G G, GOPI R, BHARALI R, et al. Probiotics - the versatile functional food ingredients[J]. Journal of Food Science and Technology, 2016, 53(2):921-933.
doi: 10.1007/s13197-015-2011-0 pmid: 27162372 |
[6] |
AL-KHALAIFAH H S. Benefits of probiotics and/or prebiotics for antibiotic-reduced poultry[J]. Poultry Science, 2018, 97(11):3807-3815.
doi: 10.3382/ps/pey160 |
[7] | 丁撷瑛. 抗生素使用对畜牧业的影响及应对思路[J]. 传播力研究, 2019, 3(21):214-215. |
[8] |
CHANG C J, LIN T L, TSAI Y L, et al. Next generation probiotics in disease amelioration[J]. Journal of Food and Drug Analysis, 2019, 27(3):615-622.
doi: 10.1016/j.jfda.2018.12.011 |
[9] | 陈雷, 田斐, 陈甜甜, 等. 微生态制剂在畜牧业上的应用研究进展[J]. 饲料博览, 2022(3):22-24,28. |
[10] | 马秋刚. 降解霉菌毒素的益生菌资源利用及新型微生态制剂开发研究进展[C]// 中国畜牧兽医学会动物营养学分会第十届全国代表大会暨十二届学术研讨会论文集. 北京: 中国农业大学出版社, 2016:321-333. |
[11] | 冀海龙. 新型畜牧微生态制剂的制备与应用[D]. 大连: 大连工业大学, 2018. |
[12] | 姚志芳, 冯宇哲, 王磊, 等. 酵母菌和乳酸菌在生物发酵饲料中的应用研究进展[J]. 饲料研究, 2020, 43(10):154-158. |
[13] | 赵红霞, 詹勇, 许梓荣. 乳酸菌的研究及其应用[J]. 江西饲料, 2003(1):9-12. |
[14] |
ZHOU Y H, ZENG Z H, XU Y B, et al. Application of Bacillus coagulans in animal husbandry and its underlying mechanisms[J]. Animals, 2020, 10(3):454.
doi: 10.3390/ani10030454 |
[15] | 杜晓雨, 赵恺, 赵志敏, 等. 枯草芽孢杆菌微生态制剂发酵研究进展[J]. 微生物学通报, 2020, 47(3):903-914. |
[16] | 张强, 孔智伟, 陈荣强, 等. 发酵饲料在养猪业中的研究进展与发展前景[J]. 猪业科学, 2018, 35(9):87-90. |
[17] | 陈中平, 李彪, 戴晋军. 活性干酵母的作用机制及在养猪中的应用[J]. 饲料研究, 2011(6):40-41,46. |
[18] | 陈文, 邱磊, 曹树威, 等. 微生态制剂在水产养殖中的应用[J]. 水产养殖, 2022, 43(7):13-16. |
[19] | 侯璐, 季海峰, 王四新, 等. 益生菌的作用机理及其在养猪生产中的应用[J]. 猪业科学, 2010, 27(4):62-64. |
[20] |
EZEJI J C, SARIKONDA D K, HOPPERTON A, et al. Parabacteroides distasonis: Intriguing aerotolerant gut anaerobe with emerging antimicrobial resistance and pathogenic and probiotic roles in human health[J]. Gut Microbes, 2021, 13(1):1922241.
doi: 10.1080/19490976.2021.1922241 |
[21] |
SAKAMOTO M, BENNO Y. Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis Gen. nov., comb. nov., Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov[J]. International Journal of Systematic and Evolutionary Microbiology, 2006, 56(7):1599-1605.
doi: 10.1099/ijs.0.64192-0 |
[22] |
WU T R, LIN C S, CHANG C J, et al. Gut commensal Parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis[J]. Gut, 2019, 68(2):248-262.
doi: 10.1136/gutjnl-2017-315458 |
[23] |
WANG K, LIAO M F, ZHOU N, et al. Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids[J]. Cell Reports, 2019, 26(1):222-235.
doi: 10.1016/j.celrep.2018.12.028 |
[24] |
XU Y, WANG N, TAN H Y, et al. Panax notoginseng saponins modulate the gut microbiota to promote thermogenesis and beige adipocyte reconstruction via leptin-mediated AMPKα/STAT3 signaling in diet-induced obesity[J]. Theranostics, 2020, 10(24):11302-11323.
doi: 10.7150/thno.47746 |
[25] |
CAI W, XU J X, LI G, et al. Ethanol extract of propolis prevents high-fat diet-induced insulin resistance and obesity in association with modulation of gut microbiota in mice[J]. Food Research International, 2020, 130:108939.
doi: 10.1016/j.foodres.2019.108939 |
[26] |
HASAIN Z, MOKHTAR N M, KAMARUDDIN N A, et al. Gut microbiota and gestational diabetes mellitus: A review of host-gut microbiota interactions and their therapeutic potential[J]. Frontiers in Cellular and Infection Microbiology, 2020, 10:188.
doi: 10.3389/fcimb.2020.00188 pmid: 32500037 |
[27] |
CUFFARO B, ASSOHOUN A L W, BOUTILLIER D, et al. In vitro characterization of gut microbiota-derived commensal strains: Selection of Parabacteroides distasonis strains alleviating TNBS-induced colitis in mice[J]. Cells, 2020, 9(9):2104.
doi: 10.3390/cells9092104 |
[28] |
KVERKA M, ZAKOSTELSKA Z, KLIMESOVA K, et al. Oral administration of Parabacteroides distasonis antigens attenuates experimental murine colitis through modulation of immunity and microbiota composition[J]. Clinical and Experimental Immunology, 2011, 163(2):250-259.
doi: 10.1111/j.1365-2249.2010.04286.x |
[29] |
LEI Y Y, TANG L, LIU S, et al. Parabacteroides produces acetate to alleviate heparanase-exacerbated acute pancreatitis through reducing neutrophil infiltration[J]. Microbiome, 2021, 9(1):115.
doi: 10.1186/s40168-021-01065-2 |
[30] |
CASON C A, KUNTZ T M, CHEN E B, et al. Microbiota composition modulates inflammation and neointimal hyperplasia after arterial angioplasty[J]. Journal of Vascular Surgery, 2020, 71(4):1378-1389.
doi: S0741-5214(19)31821-X pmid: 32035769 |
[31] |
LIU Z H, LI J Y, LIU H Y, et al. The intestinal microbiota associated with cardiac valve calcification differs from that of coronary artery disease[J]. Atherosclerosis, 2019, 284:121-128.
doi: S0021-9150(18)31513-2 pmid: 30897381 |
[32] |
DZIARSKI R, PARK S Y, KASHYAP D R, et al. Pglyrp-regulated gut microflora Prevotella falsenii, Parabacteroides distasonis and Bacteroides eggerthii enhance and Alistipes finegoldii attenuates colitis in mice[J]. PLoS One, 2016, 11(1):e0146162.
doi: 10.1371/journal.pone.0146162 |
[33] | YANG F L, KUMAR A, DAVENPORT K W, et al. Complete genome sequence of a Parabacteroides distasonis strain (CavFT hAR46) isolated from a gut wall-cavitating microlesion in a patient with severe Crohn′s disease[J]. Microbiology Resource Announcements, 2019, 8(36):585-519. |
[34] | 张海良. 怎样减少畜禽呼吸道疾病[J]. 中国畜牧业, 2020(2):77-78. |
[35] |
RAHERISON C, GIRODET P O. Epidemiology of copd[J]. European Respiratory Review, 2009, 18(114):213-221.
doi: 10.1183/09059180.00003609 pmid: 20956146 |
[36] |
LAI H C, LIN T L, CHEN T W, et al. Gut microbiota modulates COPD pathogenesis: Role of anti-inflammatory Parabacteroides goldsteinii lipopolysaccharide[J]. Gut, 2022, 71(2):309-321.
doi: 10.1136/gutjnl-2020-322599 |
[37] |
CEKANAVICIUTE E, YOO B B, RUNIA T F, et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(40):10713-10718.
doi: 10.1073/pnas.1711235114 pmid: 28893978 |
[38] |
STEHLIKOVA Z, KOSTOVCIKOVA K, KVERKA M, et al. Crucial role of microbiota in experimental psoriasis revealed by a gnotobiotic mouse model[J]. Frontiers in Microbiology, 2019, 10:236.
doi: 10.3389/fmicb.2019.00236 pmid: 30846974 |
[39] |
SHAPIRO J, COHEN N A, SHALEV V, et al. Psoriatic patients have a distinct structural and functional fecal microbiota compared with controls[J]. The Journal of Dermatology, 2019, 46(7):595-603.
doi: 10.1111/1346-8138.14933 pmid: 31141234 |
[40] |
ZHOU C, ZHAO H, XIAO X Y, et al. Metagenomic profiling of the pro-inflammatory gut microbiota in ankylosing spondylitis[J]. Journal of Autoimmunity, 2020, 107:102360.
doi: 10.1016/j.jaut.2019.102360 |
[41] |
HUANG R Y, LI F, ZHOU Y Y, et al. Metagenome-wide association study of the alterations in the intestinal microbiome composition of ankylosing spondylitis patients and the effect of traditional and herbal treatment[J]. Journal of Medical Microbiology, 2020, 69(6):797-805.
doi: 10.1099/jmm.0.001107 pmid: 31778109 |
[42] |
MORENO-ARRONES O M, SERRANO-VILLAR S, PEREZ-BROCAL V, et al. Analysis of the gut microbiota in alopecia areata: Identification of bacterial biomarkers[J]. Journal of the European Academy of Dermatology and Venereology, 2020, 34(2):400-405.
doi: 10.1111/jdv.v34.2 |
[43] | 陈发章, 杨如意. 中医药对消化道肿瘤免疫调节的研究进展[J]. 陕西中医药大学学报, 2022, 45(1):126-131. |
[44] |
PFALZER A C, NESBETH P D C, PARNELL L D, et al. Diet- and genetically-induced obesity differentially affect the fecal microbiome and metabolome in Apc1638N mice[J]. PLoS One, 2015, 10(8):e0135758.
doi: 10.1371/journal.pone.0135758 |
[45] |
KOH G Y, KANE A V, WU X, et al. Parabacteroides distasonis attenuates tumorigenesis, modulates inflammatory markers and promotes intestinal barrier integrity in azoxymethane-treated A/J mice[J]. Carcinogenesis, 2020, 41(7):909-917.
doi: 10.1093/carcin/bgaa018 |
[46] |
THEN C K, PAILLAS S, WANG X D, et al. Association of Bacteroides acidifaciens relative abundance with high-fibre diet-associated radiosensitisation[J]. BMC Biology, 2020, 18(1):102.
doi: 10.1186/s12915-020-00836-x |
[47] | 李星, 曹振辉, 林秋叶, 等. 肠道微生物及其代谢产物对动物免疫机能的影响[J]. 动物营养学报, 2019, 31(2):553-559. |
[48] | 谯仕彦. 乳酸菌对猪肠道屏障功能的调节作用及其机制[C]// 中国畜牧兽医学会动物营养学分会第七届中国饲料营养学术研讨会论文集. 北京: 中国农业大学出版社, 2014:212. |
[49] | 于波. 微生态制剂在畜牧生产中的应用[J]. 畜禽业, 2019, 30(7):28. |
[50] | 杨帆. 微生态制剂在动物生产中的应用进展[J]. 云南畜牧兽医, 2019(5):29-32. |
[51] | 金三俊, 董佳琦, 任红立, 等. 复合微生态制剂对断奶仔猪生长性能、血清生化和免疫指标及粪便中挥发性脂肪酸含量的影响[J]. 动物营养学报, 2017, 29(12):4477-4484. |
[52] | 李昆, 李筱雯, 何维敏, 等. 中药微生态制剂在畜牧生产中的应用[J]. 畜牧与兽医, 2017, 49(12):128-133. |
[53] | 秦智勇. 微生态制剂在仔猪生产中的应用[J]. 畜牧兽医科技信息, 2021(12):117. |
[54] | 金尔光, 陈洁, 邵志勇, 等. 微生态制剂在畜禽生产中的应用研究进展[J]. 畜牧与饲料科学, 2018, 39(8):68-72. |
[55] | 王欣睿. 动物微生态制剂研究进展[J]. 南方农业, 2017, 11(36):60-61. |
[56] | 宋双成. 微生态制剂在生态畜牧业中的应用效果[J]. 中国畜禽种业, 2022, 18(1):71-72. |
[57] | 葛长荣, 程志斌. 饲用微生态制剂对热应激肉鸡生产性能影响的研究进展[J]. 饲料工业, 2019, 40(3):1-9. |
[58] | 魏园园. 微生态制剂对肉鸡禽流感和新城疫免疫影响的试验研究[J]. 现代畜牧兽医, 2018(5):16-21. |
[59] |
陈猜猜, 张红星, 金君华, 等. 微生态制剂对产蛋后期种母鸡生产性能、肠道菌群和消化吸收的影响[J]. 动物营养学报, 2021, 33(12):6792-6801.
doi: 10.3969/j.issn.1006-267x.2021.12.021 |
[60] | 刘建军. 动物微生态制剂在畜牧业中的应用[J]. 畜牧兽医科技信息, 2022(5):90-92. |
[61] | 石彦荣, 徐大文. 浅析影响反刍动物瘤胃消化机能的主要因素[J]. 科学种养, 2015(8):51-52. |
[62] | 多乎杜鲁巴衣·阿力, 娜孜古丽·依热木拜克. 微生态制剂在奶牛养殖中应用分析与展望[J]. 养殖与饲料, 2022, 21(1):57-59. |
[63] | 魏小霜, 逯勇. 复合微生态制剂对犊牛生长性能、瘤胃发酵参数、血液生化指标和免疫指标的影响[J]. 中国饲料, 2021(17):46-51. |
[64] | 戚友祥. 微生态制剂在反刍动物饲料中的应用[J]. 畜禽业, 2020, 31(7):12. |
[65] |
PENG G, HUANG E F, RUAN J M, et al. Effects of a high energy and low protein diet on hepatic and plasma characteristics and Cidea and Cidec mRNA expression in liver and adipose tissue of laying hens with fatty liver hemorrhagic syndrome[J]. Animal Science Journal, 2019, 90(2):247-254.
doi: 10.1111/asj.13140 pmid: 30523654 |
[66] | 黄永堂. 断奶仔猪腹泻发病原因及综合防治措施[J]. 中国动物保健, 2022, 24(3):21-22. |
[1] | 张俊丽, 侯鹏霞, 梁小军. 南瓜籽壳对不同生长阶段西杂肉牛生长性能、血清生化和免疫指标及激素水平的影响[J]. 畜牧与饲料科学, 2024, 45(1): 20-24. |
[2] | 李莲红, 韩学琴, 罗会英, 邓红山, 刘进娣, 刘昀, 金杰, 张美艳. 香茅的生物活性及其在畜禽生产中的应用研究进展[J]. 畜牧与饲料科学, 2023, 44(6): 57-65. |
[3] | 林彭楚彬, 孙三山, 高亚杰, 阮超, 严杜建. FABPs基因家族在动物育种领域的研究进展[J]. 畜牧与饲料科学, 2023, 44(6): 76-81. |
[4] | 任仕航, 段慧慧, 杜向党, 商艳红. 噬菌体在畜禽业中的应用研究进展[J]. 畜牧与饲料科学, 2023, 44(6): 123-128. |
[5] | 王兴文, 于耀然, 刘浩, 余泽田, 董晓霞, 彭华. 加拿大畜禽遗传资源保护与利用现状及对我国的启示[J]. 畜牧与饲料科学, 2023, 44(5): 63-70. |
[6] | 孔祥飞,张东生. 畜禽业碳排放的时空特征及减排路径——以河南省为例[J]. 畜牧与饲料科学, 2023, 44(4): 61-69. |
[7] | 义拉勒特, 刘威, 云涛, 李胜利, 张春华, 杨鼎, 萨初拉, 金鹿, 张崇志, 胡晓晓, 孙海洲. 植物精油微胶囊的制备方法及其在畜禽养殖业中的应用[J]. 畜牧与饲料科学, 2023, 44(3): 33-41. |
[8] | 宋利文, 赵濛, 杨凯鑫, 高民, 胡红莲. 复合乳酸菌制剂对犊牛生长、肠道菌群与免疫性能的影响[J]. 畜牧与饲料科学, 2022, 43(6): 14-21. |
[9] | 韩战强,马亚姣,霍磊,李鹏伟,刘长春,孟燕飞. 黄芪的生物学活性及其在畜禽生产中的应用研究进展[J]. 畜牧与饲料科学, 2022, 43(6): 48-52. |
[10] | 方洲, 窦文丽, 孙奕烁, 宝华, 马燕芬. 番茄红素的功能及其在动物生产中的应用[J]. 畜牧与饲料科学, 2022, 43(5): 61-67. |
[11] | 李兰柱, 胡红莲, 管晓轩, 张昆仑, 孟迪, 魏晓玲, 孙满吉. 芦丁的生物活性及其在动物生产中的应用研究进展[J]. 畜牧与饲料科学, 2022, 43(5): 68-73. |
[12] | 李晓奇, 栗林, 贾淑萍, 王凤武. CpG-ODN作为免疫耐受诱导剂的研究进展[J]. 畜牧与饲料科学, 2022, 43(4): 19-24. |
[13] | 何彦锋, 徐婷婷, 陈盼, 刘凯莉, 解静菲, 岳珂, 张朝栋, 林露茜, 曹芹芹, 张喜文, 黄淑成. 肠道菌群对骨代谢影响的研究进展[J]. 畜牧与饲料科学, 2022, 43(4): 33-38. |
[14] | 辜彦霏, 殷瑛, 李玉杰, 宰晓东, 徐俊杰. 重组布鲁菌外膜蛋白Omp19的制备方法及免疫原性研究[J]. 畜牧与饲料科学, 2022, 43(3): 1-7. |
[15] | 解静菲, 陈诺蔓, 李潞, 岳珂, 何彦锋, 刘凯莉, 徐婷婷, 张朝栋, 林露茜, 曹芹芹, 张喜文, 黄淑成. 黄曲霉毒素对肉鸡毒性作用的研究进展[J]. 畜牧与饲料科学, 2022, 43(3): 53-58. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||