Animal Husbandry and Feed Science ›› 2022, Vol. 43 ›› Issue (6): 6-13.doi: 10.12160/j.issn.1672-5190.2022.06.002
• Basic Research • Previous Articles Next Articles
DOU Wen-li1,Baohua 2,CAO Pei-pei1,SUN Yi-shuo1,LIU Ji-guo3,YANG Wen-fei3,MA Yun1,MA Yan-fen1,2
Received:
2022-10-03
Online:
2022-11-30
Published:
2022-12-19
CLC Number:
DOU Wen-li, Baohua , CAO Pei-pei, SUN Yi-shuo, LIU Ji-guo, YANG Wen-fei, MA Yun, MA Yan-fen. Research Progress on Roles of AMP-activated Protein Kinase in Dairy Cow Diseases[J]. Animal Husbandry and Feed Science, 2022, 43(6): 6-13.
[1] |
XIONG W, XIONG Z Y, SONG A N, et al. Relieving lipid accumulation through UCP1 suppresses the progression of acute kidney injury by promoting the AMPK/ULK1/autophagy pathway[J]. Theranostics, 2021, 11(10):4637-4654.
doi: 10.7150/thno.56082 pmid: 33754018 |
[2] |
ZHOU X J, KUANG Y C, LIANG S M, et al. Metformin inhibits cell proliferation in SKM-1 cells via AMPK-mediated cell cycle arrest[J]. Journal of Pharmacological Sciences, 2019, 141(4):146-152.
doi: S1347-8613(19)35721-4 pmid: 31744691 |
[3] | LI Y J, CHEN Y Y. AMPK and autophagy[M]//QIN Z H. Autophagy: Biology and Diseases, Singapore: Springer Singapore, 2019:85-108. |
[4] | YAO F, JI G Y, ZHANG L. AMPK: A novel target controlling inflammation[J]. Acta Physiologica Sinica, 2012, 64(3):341-345. |
[5] |
LI Z, MIAO Z Y, DING L L, et al. Energy metabolism disorder mediated ammonia gas-induced autophagy via AMPK/mTOR/ULK1-Beclin1 pathway in chicken livers[J]. Ecotoxicology and Environmental Safety, 2021, 217:112219.
doi: 10.1016/j.ecoenv.2021.112219 |
[6] |
RAHMAN M A, CHO Y, NAM G, et al. Antioxidant compound, oxyresveratrol, inhibits APP production through the AMPK/ULK1/mTOR-mediated autophagy pathway in mouse cortical astrocytes[J]. Antioxidants, 2021, 10(3):408.
doi: 10.3390/antiox10030408 |
[7] |
HUNG C M, LOMBARDO P S, MALIK N, et al. AMPK/ULK1-mediated phosphorylation of Parkin ACT domain mediates an early step in mitophagy[J]. Science Advances, 2021, 7(15):eabg4544.
doi: 10.1126/sciadv.abg4544 |
[8] |
HARDIE D G, SCHAFFER B E, BRUNET A. AMPK: An energy-sensing pathway with multiple inputs and outputs[J]. Trends in Cell Biology, 2016, 26(3):190-201.
doi: S0962-8924(15)00215-9 pmid: 26616193 |
[9] |
DAVIES S P, HAWLEY S A, WOODS A, et al. Purification of the AMP-activated protein kinase on ATP-gamma-sepharose and analysis of its subunit structure[J]. European Journal of Biochemistry, 1994, 223(2):351-357.
doi: 10.1111/j.1432-1033.1994.tb19001.x pmid: 8055903 |
[10] |
BIERI M, MOBBS J I, KOAY A, et al. AMP-activated protein kinase β-subunit requires internal motion for optimal carbohydrate binding[J]. Biophysical Journal, 2012, 102(2):305-314.
doi: 10.1016/j.bpj.2011.12.012 pmid: 22339867 |
[11] |
XIAO B, SANDERS M J, CARMENA D, et al. Structural basis of AMPK regulation by small molecule activators[J]. Nature Communications, 2013, 4:3017.
doi: 10.1038/ncomms4017 pmid: 24352254 |
[12] |
LIANG J Y, XU Z X, DING Z Y, et al. Myristoylation confers noncanonical AMPK functions in autophagy selectivity and mitochondrial surveillance[J]. Nature Communications, 2015, 6:7926.
doi: 10.1038/ncomms8926 pmid: 26272043 |
[13] |
WALKER J W, JIJON H B, MADSEN K L. AMP-activated protein kinase is a positive regulator of poly(ADP-ribose) polymerase[J]. Biochemical and Biophysical Research Communications, 2006, 342(1):336-341.
doi: 10.1016/j.bbrc.2006.01.145 pmid: 16480959 |
[14] |
DE SOUZA ALMEIDA MATOS A L, OAKHILL J S, MOREIRA J, et al. Allosteric regulation of AMP-activated protein kinase by adenylate nucleotides and small-molecule drugs[J]. Biochemical Society Transactions, 2019, 47(2):733-741.
doi: 10.1042/BST20180625 pmid: 31000529 |
[15] |
LIN S C, HARDIE D G. AMPK: Sensing glucose as well as cellular energy status[J]. Cell Metabolism, 2018, 27(2):299-313.
doi: 10.1016/j.cmet.2017.10.009 |
[16] |
GARCIA D, SHAW R J. AMPK: Mechanisms of cellular energy sensing and restoration of metabolic balance[J]. Molecular Cell, 2017, 66(6):789-800.
doi: S1097-2765(17)30396-9 pmid: 28622524 |
[17] |
KIM J, YANG G, HA J. Targeting of AMP-activated protein kinase: Prospects for computer-aided drug design[J]. Expert Opinion on Drug Discovery, 2017, 12(1):47-59.
pmid: 27797589 |
[18] |
WOODS A, JOHNSTONE S R, DICKERSON K, et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade[J]. Current Biology, 2003, 13(22):2004-2008.
doi: 10.1016/j.cub.2003.10.031 pmid: 14614828 |
[19] |
WOODS A, DICKERSON K, HEATH R, et al. Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells[J]. Cell Metabolism, 2005, 2(1):21-33.
doi: 10.1016/j.cmet.2005.06.005 pmid: 16054096 |
[20] | CARLING D, SANDERS M J, WOODS A. The regulation of AMP-activated protein kinase by upstream kinases[J]. International Journal of Obesity, 2008, 32(4):S55-S59. |
[21] |
ANTONIA R J, BALDWIN A S. IKK promotes cytokine-induced and cancer-associated AMPK activity and attenuates phenformin-induced cell death in LKB1-deficient cells[J]. Science Signaling, 2018, 11(538):eaan5850.
doi: 10.1126/scisignal.aan5850 |
[22] |
LIU M J, ZHANG C, XU X L, et al. Ferulic acid inhibits LPS-induced apoptosis in bovine mammary epithelial cells by regulating the NF-κB and Nrf2 signalling pathways to restore mitochondrial dynamics and ROS generation[J]. Veterinary Research, 2021, 52(1):104.
doi: 10.1186/s13567-021-00973-3 pmid: 34256834 |
[23] |
TAK P P, FIRESTEIN G S. NF-kappaB: A key role in inflammatory diseases[J]. The Journal of Clinical Investigation, 2001, 107(1):7-11.
doi: 10.1172/JCI11830 |
[24] |
PARK C S, BANG B R, KWON H S, et al. Metformin reduces airway inflammation and remodeling via activation of AMP-activated protein kinase[J]. Biochemical Pharmacology, 2012, 84(12):1660-1670.
doi: 10.1016/j.bcp.2012.09.025 pmid: 23041647 |
[25] |
BAI J R, XIE N, HOU Y, et al. The enhanced mitochondrial dysfunction by cantleyoside confines inflammatory response and promotes apoptosis of human HFLS-RA cell line via AMPK/Sirt 1/NF-κB pathway activation[J]. Biomedicine and Pharmacotherapy, 2022, 149:112847.
doi: 10.1016/j.biopha.2022.112847 |
[26] | FERNANDEZ-MARCOS P J, AUWERX J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis[J]. The American Journal of Clinical Nutrition, 2011, 93(4):884S-890s. |
[27] |
SAJADIMAJD S, KHAZAEI M. Oxidative stress and cancer: The role of Nrf2[J]. Current Cancer Drug Targets, 2018, 18(6):538-557.
doi: 10.2174/1568009617666171002144228 |
[28] |
GUO W J, LI W, SU Y C, et al. GPR109A alleviate mastitis and enhances the blood milk barrier by activating AMPK/Nrf2 and autophagy[J]. International Journal of Biological Sciences, 2021, 17(15):4271-4284.
doi: 10.7150/ijbs.62380 pmid: 34803497 |
[29] |
LIU S Q, GUO W J, JIA Y X, et al. Menthol targeting AMPK alleviates the inflammatory response of bovine mammary epithelial cells and restores the synthesis of milk fat and milk protein[J]. Frontiers in Immunology, 2021, 12:782989.
doi: 10.3389/fimmu.2021.782989 |
[30] |
LI C, DAI S H, LU J Y, et al. Methylglyoxal: A newly detected and potentially harmful metabolite in the blood of ketotic dairy cows[J]. Journal of Dairy Science, 2018, 101(9):8513-8523.
doi: S0022-0302(18)30609-X pmid: 29960773 |
[31] |
PUPPEL K, GOŁEBIEWSKI M, SOLARCZYK P, et al. The relationship between plasma β-hydroxybutyric acid and conjugated linoleic acid in milk as a biomarker for early diagnosis of ketosis in postpartum Polish Holstein-Friesian cows[J]. BMC Veterinary Research, 2019, 15(1):1-11.
doi: 10.1186/s12917-018-1758-8 |
[32] | 杨威, 夏成, 陈媛媛, 等. 围产期酮病奶牛血液生化指标特征分析[J]. 中国兽医学报, 2019, 39(4):756-761. |
[33] |
MCART J A A, NYDAM D V, OETZEL G R. Epidemiology of subclinical ketosis in early lactation dairy cattle[J]. Journal of Dairy Science, 2012, 95(9):5056-5066.
doi: S0022-0302(12)00519-X pmid: 22916909 |
[34] |
RABOISSON D, MOUNIÉ M, MAIGNÉ E. Diseases, reproductive performance, and changes in milk production associated with subclinical ketosis in dairy cows: A meta-analysis and review[J]. Journal of Dairy Science, 2014, 97(12):7547-7563.
doi: 10.3168/jds.2014-8237 pmid: 25306269 |
[35] |
KOPIETZ F, RUPAR K, BERGGREEN C, et al. Inhibition of AMPK activity in response to insulin in adipocytes: Involvement of AMPK pS485, PDEs, and cellular energy levels[J]. American Journal of Physiology-Endocrinology and Metabolism, 2020, 319(3):e459-e471.
doi: 10.1152/ajpendo.00065.2020 |
[36] |
EVERETT L, GALLI A, CRABB D. The role of hepatic peroxisome proliferator-activated receptors (PPARs) in health and disease[J]. Liver, 2000, 20(3):191-199.
doi: 10.1034/j.1600-0676.2000.020003191.x pmid: 10902968 |
[37] |
CAGEN L M, DENG X, WILCOX H G, et al. Insulin activates the rat sterol-regulatory-element-binding protein 1c (SREBP-1c) promoter through the combinatorial actions of SREBP, LXR, Sp-1 and NF-Y cis-acting elements[J]. The Biochemical Journal, 2005, 385(Pt 1):207-216.
doi: 10.1042/BJ20040162 |
[38] |
LI Y, DING H Y, DONG J H, et al. Glucagon attenuates lipid accumulation in cow hepatocytes through AMPK signaling pathway activation[J]. Journal of Cellular Physiology, 2019, 234(5):6054-6066.
doi: 10.1002/jcp.27258 pmid: 30478902 |
[39] | EDGERTON D S, KRAFT G, SMITH M, et al. Insulin′s direct hepatic effect explains the inhibition of glucose production caused by insulin secretion[J]. JCI Insight, 2017, 2(6):e91863. |
[40] |
LI X W, LI Y, DING H Y, et al. Insulin suppresses the AMPK signaling pathway to regulate lipid metabolism in primary cultured hepatocytes of dairy cows[J]. The Journal of Dairy Research, 2018, 85(2):157-162.
doi: 10.1017/S002202991800016X |
[41] |
JUNG T W, PARK H S, CHOI G H, et al. β-aminoisobutyric acid attenuates LPS-induced inflammation and insulin resistance in adipocytes through AMPK-mediated pathway[J]. Journal of Biomedical Science, 2018, 25(1):27.
doi: 10.1186/s12929-018-0431-7 pmid: 29592806 |
[42] |
SHEN Y Z, CHEN L M, YANG W Z, et al. Exploration of serum sensitive biomarkers of fatty liver in dairy cows[J]. Scientific Reports, 2018, 8:13574.
doi: 10.1038/s41598-018-31845-0 pmid: 30206404 |
[43] |
HARDIE D G, ROSS F A, HAWLEY S A. AMPK: A nutrient and energy sensor that maintains energy homeostasis[J]. Nature Reviews Molecular Cell Biology, 2012, 13(4):251-262.
doi: 10.1038/nrm3311 pmid: 22436748 |
[44] |
GOLDSTEIN J, DEBOSE-BOYD R, BROWN M S. Protein sensors for membrane sterols[J]. Cell, 2006, 124:35-46.
doi: 10.1016/j.cell.2005.12.022 pmid: 16413480 |
[45] |
GEETHANGILI M, LIN C W, MERSMANN H J, et al. Methyl brevifolincarboxylate attenuates free fatty acid-induced lipid metabolism and inflammation in hepatocytes through AMPK/NF-κB signaling pathway[J]. International Journal of Molecular Sciences, 2021, 22(18):10062.
doi: 10.3390/ijms221810062 |
[46] |
YANG W, WANG S, LOOR J J, et al. Role of diacylglycerol O-acyltransferase (DGAT) isoforms in bovine hepatic fatty acid metabolism[J]. Journal of Dairy Science, 2022, 105(4):3588-3600.
doi: 10.3168/jds.2021-21140 pmid: 35181144 |
[47] |
MORENO-FERNANDEZ M E, GILES D A, STANKIEWICZ T E, et al. Peroxisomal β-oxidation regulates whole body metabolism, inflammatory vigor, and pathogenesis of nonalcoholic fatty liver disease[J]. JCI Insight, 2018, 3(6): e93626.
doi: 10.1172/jci.insight.93626 |
[48] |
EATON S. Control of mitochondrial beta-oxidation flux[J]. Progress in Lipid Research, 2002, 41(3):197-239.
pmid: 11814524 |
[49] |
MA H J, GUO X Z, CUI S C, et al. Dephosphorylation of AMP-activated protein kinase exacerbates ischemia/reperfusion-induced acute kidney injury via mitochondrial dysfunction[J]. Kidney International, 2022, 101(2):315-330.
doi: 10.1016/j.kint.2021.10.028 |
[50] |
KONG Y Z, ZHAO C X, TAN P P, et al. FGF21 reduces lipid accumulation in bovine hepatocytes by enhancing lipid oxidation and reducing lipogenesis via AMPK signaling[J]. Animals, 2022, 12(7):939.
doi: 10.3390/ani12070939 |
[51] |
WU Z H, TIAN M, HENG J H, et al. Current evidences and future perspectives for AMPK in the regulation of milk production and mammary gland biology[J]. Frontiers in Cell and Developmental Biology, 2020, 8:530.
doi: 10.3389/fcell.2020.00530 pmid: 32671074 |
[52] | ABU-ELHEIGA L, BRINKLEY W R, ZHONG L, et al. The subcellular localization of acetyl-CoA carboxylase 2[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(4):1444-1449. |
[53] |
LI N, ZHAO F, WEI C J, et al. Function of SREBP1 in the milk fat synthesis of dairy cow mammary epithelial cells[J]. International Journal of Molecular Sciences, 2014, 15(9):16998-17013.
doi: 10.3390/ijms150916998 pmid: 25250914 |
[54] |
WU Z H, LI Q H, YANG S W, et al. Energy deprivation-induced AMPK activation inhibits milk synthesis by targeting PrlR and PGC-1α[J]. Cell Communication and Signaling, 2022, 20(1):25.
doi: 10.1186/s12964-022-00830-6 pmid: 35248054 |
[55] |
JIANG W Q, ZHU Z J, THOMPSON H J. Dietary energy restriction modulates the activity of AMP-activated protein kinase, Akt, and mammalian target of rapamycin in mammary carcinomas, mammary gland, and liver[J]. Cancer Research, 2008, 68(13):5492-5499.
doi: 10.1158/0008-5472.CAN-07-6721 pmid: 18593953 |
[56] |
BURGOS S A, KIM J J M, DAI M, et al. Energy depletion of bovine mammary epithelial cells activates AMPK and suppresses protein synthesis through inhibition of mTORC1 signaling[J]. Hormone and Metabolic Research, 2013, 45(3):183-189.
doi: 10.1055/s-0032-1323742 pmid: 22972179 |
[57] |
ZHANG M C, ZHAO S G, WANG S S, et al. D-glucose and amino acid deficiency inhibits casein synthesis through JAK2/STAT5 and AMPK/mTOR signaling pathways in mammary epithelial cells of dairy cows[J]. Journal of Dairy Science, 2018, 101(2):1737-1746.
doi: S0022-0302(17)31141-4 pmid: 29248227 |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 51
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 123
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||