[1] 唐丽雅,郑越,朱津,等.郑州地区周代农作物资源利用研究:以荥阳官庄为例[J].第四纪研究,2022,42(1):129-143. [2] SINGH J,CHHABRA B,RAZA A,et al.Important wheat diseases in the US and their management in the 21st century[J].Frontiers in Plant Science,2023,13:1010191. [3] BENTLEY A R,DONOVAN J,SONDER K,et al.Near-to long-term measures to stabilize global wheat supplies and food security[J].Nature Food,2022,3(7):483-486. [4] CHEN T,SHABALA S,NIU Y,et al.Molecular mechanisms of salinity tolerance in rice[J].The Crop Journal,2021,9(3):506-520. [5] 杨骞,祝辰辉,寇相涛,等.中国三大粮食作物产能提升的源泉[J].中国软科学,2024(4):46-55. [6] 马凯,饶良懿.我国土壤盐碱化问题研究脉络和热点分析[J].中国农业大学学报,2023,28(11):90-102. [7] 朱建峰,杨秀艳,武海雯,等.植物种子萌发期耐盐碱性提高技术研究进展[J].生物技术通报,2020,36(2):158-168. [8] 闫伟. 土默川平原盐碱化区域苜蓿根际促生菌的筛选及应用研究[D].呼和浩特:内蒙古农业大学,2022. [9] ZAMAN M,SHAHID S A,HENG L E.Guideline for salinity assessment,mitigation and adaptation using nuclear and related techniques[M].Cham:Springer International Publishing,2018. [10] 吴强. 基于无人机遥感和机器学习的河套灌区小麦生长监测及产量预测[D].呼和浩特:内蒙古农业大学,2023. [11] 张翼夫,李问盈,胡红,等.盐碱地改良研究现状及展望[J].江苏农业科学,2017,45(18):7-10. [12] BISWAS S,SEAL P,MAJUMDER B,et al.Efficacy of seed priming strategies for enhancing salinity tolerance in plants:An overview of the progress and achievements[J].Plant Stress,2023,9:100186. [13] 刘晓威,杨秀艳,武海雯,等.NaCl胁迫对红砂萌发的影响及萌发期耐盐性评价[J].生物技术通报,2019,35(1):27-34. [14] 刘晓威,杨秀艳,武海雯,等.NaCl胁迫下红砂种子萌动期差异表达基因的转录组分析[J].南京林业大学学报(自然科学版),2019,43(3):28-36. [15] ZHANG Z H,LIU L T,LI H Y,et al.Exogenous melatonin promotes the salt tolerance by removing active oxygen and maintaining ion balance in wheat(Triticum aestivum L.)[J].Frontiers in Plant Science,2022,12:787062. [16] 李媛媛,陈博,姚立蓉,等.283份小麦品种(系)萌发期耐盐碱性评价及种质筛选[J].中国农业科技导报,2021,23(3):25-33. [17] LIU Z J,WANG S S.Detecting changes of wheat vegetative growth and their response to climate change over the North China Plain[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2018,11(12):4630-4636. [18] 姚婷,刘扬,梁允刚,等.盐碱胁迫对小麦幼苗生长和根际细菌群落结构的影响[J].微生物学通报,2023,50(10):4472-4484. [19] 孙文娇. 藜麦多糖促进盐碱胁迫下小麦种子萌发和幼苗生长的效应分析[D].太原:山西农业大学,2022. [20] SELEIMAN M F,TALHA ASLAM M,AHMED ALHAMMAD B,et al.Salinity stress in wheat:Effects,mechanisms and management strategies[J].Phyton,2022,91(4):667-694. [21] LYNCH J P.Harnessing root architecture to address global challenges[J].The Plant Journal,2022,109(2):415-431. [22] ZOU P,LI K,LIU S,et al.Effect of sulfated chitooligosaccharides on wheat seedlings(Triticum aestivum L.)under salt stress[J].Journal of Agricultural and Food Chemistry,2016,64(14):2815-2821. [23] SADDIQ M S,IQBAL S,HAFEEZ M B,et al.Effect of salinity stress on physiological changes in winter and spring wheat[J].Agronomy,2021,11(6):1193. [24] 王秀芹,徐媛婧,高杰,等.土壤盐碱度对小麦主要农艺性状和产量的影响[J].农业科技通讯,2018(7):123-128. [25] KIREMIT M S,ARSLAN H.Effects of different shallow and saline groundwater depths on soil salinity,evapotranspiration,grain yield and spike traits of winter wheat[J].Journal of Agronomy and Crop Science,2023,209(3):402-421. [26] ASHRAF M.Stress-induced changes in wheat grain composition and quality[J].Critical Reviews in Food Science and Nutrition,2014,54(12):1576-1583. [27] GUO Q,LIU L,BARKLA B J.Membrane lipid remodeling in response to salinity[J].International Journal of Molecular Sciences,2019,20(17):4264. [28] 刘昌壮,陶雨朝,杨富强,等.硫酸锰溶液浸种对玉米种子萌发期抗盐碱生理特性的影响[J].江苏农业学报,2023,39(3):645-656. [29] ZHANG K H,TANG J B,WANG Y,et al.The tolerance to saline-alkaline stress was dependent on the roots in wheat[J].Physiology and Molecular Biology of Plants,2020,26:947-954. [30] HASANUZZAMAN M,RAIHAN M R H,MASUD A A C,et al.Regulation of reactive oxygen species and antioxidant defense in plants under salinity[J].International Journal of Molecular Sciences,2021,22(17):9326. [31] 焦德志,赵泽龙.盐碱胁迫对植物形态和生理生化影响及植物响应的研究进展[J].江苏农业科学,2019,47(20):1-4. [32] EL SABAGH A,ISLAM M S,SKALICKY M,et al.Salinity stress in wheat(Triticum aestivum L.)in the changing climate:Adaptation and management strategies[J].Frontiers in Agronomy,2021,3:661932. [33] ŠKUTE N,PETJUKEVICS A,SAVICKA M,et al.Influence of flooding on leaf cell membranes of three latvian wheat cultivars(Triticum aestivum,2019(1):287-290. [34] LIU R,ZHANG Q N,LU J,et al.The effects of exogenous pyridoxal-5-phosphate on seedling growth and development of wheat under salt stress[J].Cereal Research Communications,2019,47(3):442-454. [35] ISAYENKOV S V,MAATHUIS F J M.Plant salinity stress:Many unanswered questions remain[J].Frontiers in Plant Science,2019,10:80. [36] 杜晓东,蔡永盛,赵海新,等.花期低温胁迫对寒地水稻花粉粒及剑叶超微结构的影响[J].华北农学报,2023,38(S1):78-85. [37] ZEESHAN M,LU M,SEHAR S,et al.Comparison of biochemical,anatomical,morphological,and physiological responses to salinity stress in wheat and barley genotypes deferring in salinity tolerance[J].Agronomy,2020,10(1):127. [38] HAMEED A,AHMED M Z,HUSSAIN T,et al.Effects of salinity stress on chloroplast structure and function[J].Cells,2021,10(8):2023. [39] HUA Y,ZHANG Y,ZHANG T,et al.Low iron ameliorates the salinity-induced growth cessation of seminal roots in wheat seedlings[J].Plant,Cell and Environment,2023,46(2):567-591. [40] MITSUYA S,TAKEOKA Y,MIYAKE H.Effects of sodium chloride on foliar ultrastructure of sweet potato(Ipomoea batatas Lam.)plantlets grown under light and dark conditions in vitro[J].Journal of Plant Physiology,2000,157(6):661-667. [41] 周铁扬. NaHCO3胁迫对蓝花耧斗菜超微结构及生理特性的影响[D].长春:吉林农业大学,2023. [42] GANAPATI R K,NAVEED S A,ZAFAR S,et al.Saline-alkali tolerance in rice:Physiological response,molecular mechanism,and QTL identification and application to breeding[J].Rice Science,2022,29(5):412-434. [43] 楚乐乐,罗成科,田蕾,等.植物对碱胁迫适应机制的研究进展[J].植物遗传资源学报,2019,20(4):836-844. [44] LIU D,MA Y,RUI M,et al.Is high pH the key factor of alkali stress on plant growth and physiology? A case study with wheat(Triticum aestivum L.)seedlings[J].Agronomy,2022,12(8):1820. [45] 蔺吉祥,李晓宇,唐佳红,等.盐碱胁迫对小麦种子萌发、早期幼苗生长及Na+、K+代谢的影响[J].麦类作物学报,2011,31(6):1148-1152. [46] MAHLOOJI M,SEYED SHARIFI R,RAZMJOO J,et al.Effect of salt stress on photosynthesis and physiological parameters of three contrasting barley genotypes[J].Photosynthetica,2018,56:549-556. [47] 张永强,雷钧杰,陈传信,等.遮阴程度对小麦旗叶内源激素含量、抗氧化酶活性及光合特性的影响[J/OL].麦类作物学报,2024:1-9.(2024-05-11).http://kns.cnki.net/kcms/detail/61.1359.s.20240509.1045.024.html. [48] BLÁZQUEZ M A,NELSON D C,WEIJERS D.Evolution of plant hormone response pathways[J].Annual Review of Plant Biology,2020,71:327-353. [49] 赵杨,杨永青,丁杨林,等.植物非生物逆境学科发展综述[J].植物生理学报,2024,60(2):248-270. [50] 赵昊阳,朱俊杰.植物激素对盐胁迫的响应、适应及调控机制研究进展[J/OL].分子植物育种,2023:1-22.(2023-07-24).http://kns.cnki.net/kcms/detail/46.1068.S.20230724.1431.005.html. [51] 刘建新,刘瑞瑞,刘秀丽,等.外源硫化氢对盐碱胁迫下裸燕麦叶片有机酸和激素含量的影响[J].植物研究,2023,43(1):76-89. [52] 张美珍,王丽娜,赵微,等.耐盐碱溶磷菌对大豆幼苗叶片脂质代谢组的影响[J].中国油料作物学报,2023,45(6):1284-1294. [53] YU J,NIU L J,YU J H,et al.The involvement of ethylene in calcium-induced adventitious root formation in cucumber under salt stress[J].International Journal of Molecular Sciences,2019,20(5):1047. [54] DUBOIS M,VAN DEN BROECK L,INZÉ D.The pivotal role of ethylene in plant growth[J].Trends in Plant Science,2018,23(4):311-323. [55] 王新磊,吕新芳.氮代谢参与植物逆境抵抗的作用机理研究进展[J].广西植物,2020,40(4):583-591. [56] AHANGER M A,QIN C,BEGUM N,et al.Nitrogen availability prevents oxidative effects of salinity on wheat growth and photosynthesis by up-regulating the antioxidants and osmolytes metabolism,and secondary metabolite accumulation[J].BMC Plant Biology,2019,19(1):479. [57] WEI Y H,WANG X C,ZHANG Z Y,et al.Nitrogen regulating the expression and localization of four glutamine synthetase isoforms in wheat(Triticum aestivum L.)[J].International Journal of Molecular Sciences,2020,21(17):6299. [58] 王亚妮,孙韬.盐碱胁迫下小麦幼苗对施氮水平的生长、生理响应[J].麦类作物学报,2022,42(2):220-225. [59] FANG S M,HOU X,LIANG X L.Response mechanisms of plants under saline-alkali stress[J].Frontiers in Plant Science,2021,12:667458. [60] MANSOUR M M F.Role of vacuolar membrane transport systems in plant salinity tolerance[J].Journal of Plant Growth Regulation,2023,42(3):1364-1401. [61] WANG Y J,ZHANG X Y,HUANG G R,et al.Dynamic changes in membrane lipid composition of leaves of winter wheat seedlings in response to PEG-induced water stress[J].BMC Plant Biology,2020,20(1):84. [62] 李鑫,张美珍,郑翘楚,等.盐碱胁迫下产ACC脱氨酶促生菌对绿豆叶片脂质代谢的影响[J].干旱地区农业研究,2023,41(6):72-78. [63] ROGOWSKA A,SZAKIEL A.The role of sterols in plant response to abiotic stress[J].Phytochemistry Reviews,2020,19(6):1525-1538. [64] ANNUM N,AHMED M,IMTIAZ K,et al.32Pi labeled transgenic wheat shows the accumulation of phosphatidylinositol 4,5-bisphosphate and phosphatidic acid under heat and osmotic stress[J].Frontiers in Plant Science,2022,13:881188. [65] YU Y C,KOU M,GAO Z H,et al.Involvement of phosphatidylserine and triacylglycerol in the response of sweet potato leaves to salt stress[J].Frontiers in Plant Science,2019,10:1086. [66] SHI C C,YANG F,LIU Z H,et al.Uniform water potential induced by salt,alkali,and drought stresses has different impacts on the seedling of Hordeum jubatum:From growth,photosynthesis,and chlorophyll fluorescence[J].Frontiers in Plant Science,2021,12:PP733236. [67] BORDENAVE C D,ROCCO R,MAIALE S J,et al.ChlorophyⅡ a fluorescence analysis reveals divergent photosystem Ⅱresponses to saline,alkaline and saline-alkaline stresses in the two Lotus japonicus model ecotypes MG20 and Gifu-129[J].Acta Physiologiae Plantarum,2019,41(9):167. [68] HAJIBOLAND R,CHERAGHVAREH L,POSCHENRIEDER C.Improvement of drought tolerance in tobacco(Nicotiana rustica L.)plants by silicon[J].Journal of Plant Nutrition,2017,40(12):1661-1676. [69] 孙璐,周宇飞,李丰先,等.盐胁迫对高粱幼苗光合作用和荧光特性的影响[J].中国农业科学,2012,45(16):3265-3272. [70] MOUSTAFA E S A,ALI M M A,KAMARA M M,et al.Field screening of wheat advanced lines for salinity tolerance[J].Agronomy,2021,11(2):281. [71] UZAIR M,ALI M,FIAZ S,et al.The characterization of wheat genotypes for salinity tolerance using morpho-physiological indices under hydroponic conditions[J].Saudi Journal of Biological Sciences,2022,29(6):103299. [72] 任根增,高志远,张瑜,等.混合盐碱胁迫对高粱农艺性状及生理指标的影响[J].作物杂志,2017(1):100-106. [73] AHMED H G M D,ZENG Y W,RAZA H,et al.Characterization of wheat(Triticum aestivum L.)accessions using morpho-physiological traits under varying levels of salinity stress at seedling stage[J].Frontiers in Plant Science,2022,13:953670. [74] QUAMRUZZAMAN M,MANIK S M N,LIVERMORE M,et al.Multidimensional screening and evaluation of morpho-physiological indices for salinity stress tolerance in wheat[J].Journal of Agronomy and Crop Science,2022,208(4):454-471. [75] 何子华. 盐胁迫下胀果甘草和乌拉尔甘草渗透调节特征的比较分析[D].兰州:兰州大学,2022. [76] MUNNS R.Comparative physiology of salt and water stress[J].Plant,Cell and Environment,2002,25(2):239-250. [77] GONG Z.Plant abiotic stress:New insights into the factors that activate and modulate plant responses[J].Journal of Integrative Plant Biology,2021,63(3):429. [78] ZHAO S S,ZHANG Q K,LIU M Y,et al.Regulation of plant responses to salt stress[J].International Journal of Molecular Sciences,2021,22(9):PP4609. [79] ZHENG M,LI J P,ZENG C W,et al.Subgenome-biased expression and functional diversification of a Na+/H+ antiporter homoeologs in salt tolerance of polyploid wheat[J].Frontiers in Plant Science,2022,13:1072009. [80] 康红霞,伍国强,魏明,等.Na+/H+逆向转运蛋白在植物应答非生物逆境胁迫中的作用[J].植物生理学报,2022,58(3):511-523. [81] CHEN J F,LIU Y,ZHANG T Y,et al.Integrated physiological and transcriptional dissection reveals the core genes involving nutrient transport and osmoregulatory substance biosynthesis in allohexaploid wheat seedlings under salt stress[J].BMC Plant Biology,2022,22(1):PP502. [82] GRAUS D,KONRAD K R,BEMM F,et al.High V-PPase activity is beneficial under high salt loads,but detrimental without salinity[J].New Phytologist,2018,219(4):1421-1432. [83] OTOCH O L D M,SOBREIRA M C A,ARAGÃO D F E M,et al.Salt modulation of vacuolar H+-ATPase and H+-Pyrophosphatase activities in Vigna unguiculata[J].Journal of Plant Physiology,2001,158(5):545-551. [84] SOARES C,CARVALHO M E A,AZEVEDO R A,et al.Plants facing oxidative challenges:A little help from the antioxidant networks[J].Environmental and Experimental Botany,2019,161:4-25. [85] ZHU D,LUO F,ZOU R,et al.Integrated physiological and chloroplast proteome analysis of wheat seedling leaves under salt and osmotic stresses[J].Journal of Proteomics,2021,234:PP104097. [86] CAVERZAN A,CASASSOLA A,BRAMMER S P.Reactive oxygen species and antioxidant enzymes involved in plant tolerance to stress[J].Abiotic and Biotic Stress in Plants-Recent Advances and Future Perspectives,2016,17:463-480. [87] SUN Y D,GUO S Q,FAN L L,et al.Molecular oxygen activation in photocatalysis:Generation,detection and application[J].Surfaces and Interfaces,2024,46:PP104033. [88] KAYA C,UGURLAR F,ASHRAF M,et al.Nitric oxide and hydrogen sulfide work together to improve tolerance to salinity stress in wheat plants by upraising the AsA-GSH cycle[J].Plant Physiology and Biochemistry,2023,194:651-663. [89] LI B B,ZHANG S B,LV Y Y,et al.Reactive oxygen species-induced protein carbonylation promotes deterioration of physiological activity of wheat seeds[J].PLoS One,2022,17(3):e0263553. [90] SHEYHAKINIA S,BAMARY Z,EINALI A,et al.The induction of salt stress tolerance by jasmonic acid treatment in Roselle(Hibiscus sabdariffa L.)seedlings through enhancing antioxidant enzymes activity and metabolic changes[J].Biologia,2020,75:681-692. [91] 王荣荣,谢冰莹,王海琪,等.滴灌春小麦根系形态特征及内源激素含量对花期干旱及复水的响应[J].麦类作物学报,2023,43(9):1174-1186. [92] CHAUHAN A,ABUAMARAH B A,KUMAR A,et al.Influence of gibberellic acid and different salt concentrations on germination percentage and physiological parameters of oat cultivars[J].Saudi Journal of Biological Sciences,2019,26(6):1298-1304. [93] GUPTA A,RICO-MEDINA A,CAÑO-DELGADO A I.The physiology of plant responses to drought[J].Science(New York,N.Y.),2020,368(6488):266-269. [94] ELHAKEM A H.Salicylic acid ameliorates salinity tolerance in maize by regulation of phytohormones and osmolytes[J].Plant,Soil and Environment,2020,66(10):533-541. [95] SHARMA M,TISARUM R,KOHLI R K,et al.Inroads into saline-alkaline stress response in plants:Unravelling morphological,physiological,biochemical,and molecular mechanisms[J].Planta,2024,259(6):130. [96] ALI A,PETROV V,YUN D J,et al.Revisiting plant salt tolerance:Novel components of the SOS pathway[J].Trends in Plant Science,2023,28(9):1060-1069. [97] NI L,WANG S,SHEN T,et al.Calcium/calmodulin-dependent protein kinase OsDMI3 positively regulates saline-alkaline tolerance in rice roots[J].Plant Signaling and Behavior,2020,15(11):1813999. [98] 王雷,郭岩,杨淑华.非生物胁迫与环境适应性育种的现状及对策[J].中国科学:生命科学,2021,51(10):1424-1434. [99] MALIK A,GUL A,HANIF U,et al.Salt responsive transcription factors in wheat[M] //Climate Change and Food Security with Emphasis on Wheat.Amsterdam:Elsevier,2020:107-127. [100] 齐学礼,李莹,段俊枝.耐盐基因在小麦耐盐基因工程中的应用[J].浙江农业学报,2024,36(6):1447-1457. [101] 高灿. 过表达ZmTINY2和AtNACL1基因小麦的耐盐及抗旱性分析[D].泰安:山东农业大学,2020. [102] ZHANG Q,LIU Y Q,JIANG Y L,et al.OsASR6 enhances salt stress tolerance in rice[J].International Journal of Molecular Sciences,2022,23(16):9340. [103] YOON J S,KIM J Y,KIM D Y,et al.A novel wheat ASR gene,TaASR2D,enhances drought tolerance in Brachypodium distachyon[J].Plant Physiology and Biochemistry,2021,159:400-414. [104] 朱金成,杨洋,娄慧,等.外源褪黑素调控棉花枯萎病抗性研究[J].生物技术通报,2023,39(1):243-252. [105] HALDER T,CHOUDHARY M,LIU H,et al.Wheat proteomics for abiotic stress tolerance and root system architecture:Current status and future prospects[J].Proteomes,2022,10(2):17. [106] PRIYA M,DHANKER O P,SIDDIQUE K H M,et al.Drought and heat stress-related proteins:An update about their functional relevance in imparting stress tolerance in agricultural crops[J].Theoretical and Applied Genetics,2019,132:1607-1638. [107] SHARMA P,GAUR S N,GOEL N,et al.Engineered hypoallergenic variants of osmotin demonstrate hypoallergenicity with in vitro and in vivo methods[J].Molecular Immunology,2015,64(1):46-54. [108] 曲悦,王姝瑶,郝鑫,等.盐胁迫诱导植物交叉适应及其信号转导[J].植物生理学报,2022,58(6):1045-1054. [109] LIU H,XING M Y,YANG W B,et al.Genome-wide identification of and functional insights into the late embryogenesis abundant(LEA)gene family in bread wheat(Triticum aestivum)[J].Scientific Reports,2019,9(1):13375. [110] LUO K,HE D J,GUO J,et al.Molecular advances in breeding for durable resistance against pests and diseases in wheat:Opportunities and Challenges[J].Agronomy,2023,13(3):PP628. |