北方农业学报 ›› 2024, Vol. 52 ›› Issue (1): 125-134.doi: 10.12190/j.issn.2096-1197.2024.01.14

• 农业生态环境·农业信息技术 • 上一篇    

基于改进的YOLOv5苹果叶部病害识别研究

赵兴1, 邬欢欢1,2   

  1. 1.塔里木大学 信息工程学院,新疆 阿拉尔 843300;
    2.塔里木绿洲农业教育部重点实验室,新疆 阿拉尔 843300
  • 收稿日期:2023-11-20 出版日期:2024-05-17 发布日期:2024-05-17
  • 通讯作者: 邬欢欢(1982—),男,教授,硕士,主要从事智慧农业、计算机图像处理、人工智能方面的研究工作。
  • 作者简介:赵 兴(1999—),男,硕士研究生,研究方向为农业信息化、数字图像处理。
  • 基金资助:
    兵团财政科技计划项目南疆重点产业创新发展支撑计划(2022DB005); 塔里木大学校长基金项目(TDZKZD202104)

Research on apple leaf disease detection based on improved YOLOv5

ZHAO Xing1, WU Huanhuan1,2   

  1. 1. School of Information Engineering,Tarim University,Aral 843300,China;
    2. Ministry of Education Key Laboratory of Tarim Oasis Agriculture,Aral 843300,China
  • Received:2023-11-20 Online:2024-05-17 Published:2024-05-17

摘要: 【目的】提出一种基于改进YOLOv5模型的病害目标检测算法,实现对苹果叶部病害的自动识别,解决YOLOv5检测模型存在的漏检和误检问题。【方法】基于卷积神经网络改进的YOLOv5模型,采用加权双向特征金字塔网络(BiFPN)特征融合方法,有效改善PANet对多尺度特征融合的不良影响,并加入CBAM模块,使网络能更准确地定位和识别苹果叶部病害,建立一种苹果叶部病害检测的算法模型;使用ATCSP模块和自上而下的特征融合方法来增强模型对多尺度疾病的检测效果,并将该模型与SSD、YOLOv4、YOLOv6和YOLOv7模型进行对比。【结果】改进的YOLOv5检测算法模型显著提高了苹果叶部病害检测的精度,对比原始算法,精度(P)提升了5.1%,达到90.8%;平均精度均值(mAP)提高了1.2%,达到93.4%;模型大小减少21.4 MB。改进后的YOLOV5算法精度比SSD、YOLOv4、YOLOv6和YOLOv7模型分别高11.3、4.4、4.2、3.6个百分点。【结论】提出了一种基于卷积神经网络改进的YOLOv5苹果叶部病害检测模型,改进后的YOLOv5模型检测速度快、准确率高,且模型较小,能够实现对苹果叶部病害的自动识别。

关键词: YOLOv5, 苹果, 叶部病害, 识别, 卷积神经网络

Abstract: 【Objective】Propose a disease target detection algorithm based on improved YOLOv5 model,to achieve automatic recognition of apple leaf diseases and solve the problems of miss and false detection in the YOLOv5 detection model.【Methods】Based on the YOLOv5 model improved by convolutional neural network,weighted bidirectional feature pyramid network(BiFPN)feature fusion method was used to effectively improve the adverse effect of PANet on multi-scale feature fusion. The CBAM module was added to enable the network to more accurately locate and identify apple leaf diseases and establishing an algorithm model for detecting apple leaf diseases. The ATCSP module and top-down feature fusion method were used to enhance the detection performance of the model for multi-scale diseases. The model was compared with SSD,YOLOv4,YOLOv6,and YOLOv7 models.【Results】The improved YOLOv5 detection algorithm model significantly improved the accuracy of apple leaf disease detection. Compared with the original algorithm,accuracy(P) increased by 5.1%,reaching 90.8%;average precision mean(mAP)increased by 1.2%,reaching 93.4%;the model size reduced by 21.4 MB. The accuracy of improved YOLOV5 algorithm was 11.3,4.4,4.2,and 3.6 percentage points higher than SSD,YOLOv4,YOLOv6,and YOLOv7 models,respectively.【Conclusion】A convolutional neural network-based improved YOLOv5 apple leaf disease detection model was proposed. The improved YOLOv5 model had fast detection speed,high detection accuracy,and small size,which can achieve automatic recognition of apple leaf diseases.

Key words: YOLOv5, Apple, Leaf diseases, Identification, Convolutional neural network

中图分类号: 

  • TP391.41