[1] |
WANG S G, ZENG Y. Ammonia emission mitigation in food waste composting:A review[J]. Bioresource Technology, 2018, 248:13-19.
doi: 10.1016/j.biortech.2017.07.050
|
[2] |
ZHAO W, YU H, LIANG S, et al. Resource impacts of municipal solid waste treatment systems in Chinese Cities based on hybrid life cycle assessment[J]. Resources, Conservation and Recycling, 2018, 130:215-225.
doi: 10.1016/j.resconrec.2017.12.004
|
[3] |
毕珠洁, 邰俊, 陈奕, 等. 上海市有机垃圾原料特性研究[J]. 环境卫生工程, 2016, 24(4):5-7.
|
[4] |
CERDA A, ARTOLA A, FONT X, et al. Composting of food wastes: Status and challenges[J]. Bioresource Technology, 2018, 248:57-67.
doi: S0960-8524(17)31037-4
pmid: 28693949
|
[5] |
PARIDA A K, DAS A B. Salt tolerance and salinity effects on plants: A review[J]. Ecotoxicology and Environmental Safety, 2005, 60(3):324-349.
doi: 10.1016/j.ecoenv.2004.06.010
pmid: 15590011
|
[6] |
强敬雯, 王晚晴, 唐曼玉, 等. 黑水虻转化厨余垃圾及产品应用相关研究进展[J]. 饲料工业, 2023(6):25-32.
|
[7] |
BANKS I J, GIBSON W T, CAMERON M M. Growth rates of black soldier fly larvae fed on fresh human faeces and their implication for improving sanitation[J]. Tropical Medicine and International Health, 2014, 19(1):14-22.
doi: 10.1111/tmi.2013.19.issue-1
|
[8] |
喻国辉, 陈燕红, 喻子牛, 等. 黑水虻幼虫和预蛹的饲料价值研究进展[J]. 昆虫知识, 2009, 46(1):41-45.
|
[9] |
CHANG C T, NEGI S, RANI A, et al. Food waste and soybean curd residue composting by black soldier fly[J]. Environmental Research, 2022, 214:113792.
doi: 10.1016/j.envres.2022.113792
|
[10] |
MERTENAT A, DIENER S, ZURBRÜGG C. Black soldier fly biowaste treatment-Assessment of global warming potential[J]. Waste Management, 2019, 84:173-181.
doi: 10.1016/j.wasman.2018.11.040
|
[11] |
LIU T, AWASTHI M K, AWASTHI S K, et al. Effects of black soldier fly larvae (Diptera: Stratiomyidae) on food waste and sewage sludge composting[J]. Journal of Environmental Management, 2020, 256:109967.
doi: 10.1016/j.jenvman.2019.109967
|
[12] |
姚丽贤, 李国良, 党志. 集约化养殖禽畜粪中主要化学物质调查[J]. 应用生态学报, 2006, 17(10):1989-1992.
|
[13] |
BESKIN K V, HOLCOMB C D, CAMMACK J A, et al. Larval digestion of different manure types by the black soldier fly (Diptera: Stratiomyidae) impacts associated volatile emissions[J]. Waste Management, 2018, 74:213-220.
doi: S0956-053X(18)30019-9
pmid: 29397276
|
[14] |
LALANDER C, DIENER S, ZURBRÜGG C, et al. Effects of feedstock on larval development and process efficiency in waste treatment with black soldier fly (Hermetia illucens)[J]. Journal of Cleaner Production, 2019, 208:211-219.
doi: 10.1016/j.jclepro.2018.10.017
|
[15] |
PURSCHKE B, SCHEIBELBERGER R, AXMANN S, et al. Impact of substrate contamination with mycotoxins, heavy metals and pesticides on the growth performance and composition of black soldier fly larvae (Hermetia illucens) for use in the feed and food value chain[J]. Food Additives and Contaminants, 2017, 34(8):1410-1420.
|
[16] |
LIU Q L, TOMBERLIN J K, BRADY J A, et al. Black soldier fly (Diptera:Stratiomyidae) larvae reduce Escherichia coli in dairy manure[J]. Environmental Entomology, 2008, 37(6):1525-1530.
doi: 10.1603/0046-225X-37.6.1525
|
[17] |
ERICKSON M C, ISLAM M, SHEPPARD C, et al. Reduction of Escherichia coli O157: H7 and Salmonella enterica serovar enteritidis in chicken manure by larvae of the black soldier fly[J]. Journal of Food Protection, 2004, 67(4):685-690.
doi: 10.4315/0362-028X-67.4.685
|
[18] |
LALANDER C H, FIDJELAND J, DIENER S, et al. High waste-to-biomass conversion and efficient Salmonella spp. reduction using black soldier fly for waste recycling[J]. Agronomy for Sustainable Development, 2015, 35(1):261-271.
doi: 10.1007/s13593-014-0235-4
|
[19] |
STERGIOPOULOS K, CABRERO P, DAVIES S A, et al. Salty dog, an SLC5 symporter, modulates Drosophila response to salt stress[J]. Physiological Genomics, 2009, 37(1):1-11.
doi: 10.1152/physiolgenomics.90360.2008
|
[20] |
RUSSELL C, WESSNITZER J, YOUNG J M, et al. Dietary salt levels affect salt preference and learning in larval Drosophila[J]. PLoS One, 2011, 6(6):e20100.
doi: 10.1371/journal.pone.0020100
|
[21] |
叶家炜, 关婉婷, 石逸夫, 等. 开口料及猪粪对黑水虻幼虫生长的影响[J]. 广东农业科学, 2020, 47(7):137-141.
|
[22] |
OAKLEY B, BENJAMIN R M. Neural mechanisms of taste[J]. Physiological Reviews, 1966, 46(2):173-211.
pmid: 5325968
|
[23] |
AVERY J A, INGEHOLM J E, WOHLTJEN S, et al. Neural correlates of taste reactivity in autism spectrum disorder[J]. NeuroImage: Clinical, 2018, 19:38-46.
doi: 10.1016/j.nicl.2018.04.008
|
[24] |
陆丽珠, 李楚君, 陈柏宇, 等. 饲料中油脂和盐分含量对黑水虻幼虫生长性能的影响[J]. 饲料工业, 2021, 42(16):58-64.
|
[25] |
陈柏宇, 李楚君, 胡斌, 等. 黑水虻幼虫饲用价值[J]. 饲料工业, 2020, 41(10):9-15.
|
[26] |
LIU X, CHEN X, WANG H, et al. Dynamic changes of nutrient composition throughout the entire life cycle of black soldier fly[J]. PLoS One, 2017, 12(8):e0182601.
doi: 10.1371/journal.pone.0182601
|
[27] |
RIEDL C A L, OSTER S, BUSTO M, et al. Natural variability in Drosophila larval and pupal NaCl tolerance[J]. Journal of Insect Physiology, 2016, 88:15-23.
doi: 10.1016/j.jinsphys.2016.02.007
|
[28] |
RODRIGUEZ L, SOKOLOWSKI M B, SHORE J S. Habitat selection by Drosophila melanogaster larvae[J]. Journal of Evolutionary Biology, 1992, 5(1):61-70.
doi: 10.1046/j.1420-9101.1992.5010061.x
|
[29] |
RAIMONDI S, SPAMPINATO G, MACAVEI L I, et al. Effect of rearing temperature on growth and microbiota composition of Hermetia illucens[J]. Microorganisms, 2020, 8(6):902.
doi: 10.3390/microorganisms8060902
|
[30] |
AO Y, YANG C, WANG S, et al. Characteristics and nutrient function of intestinal bacterial communities in black soldier fly (Hermetia illucens L.) larvae in livestock manure conversion[J]. Microbial Biotechnology, 2021, 14(3):886-896.
doi: 10.1111/mbt2.v14.3
|
[31] |
EGERT M, MARHAN S, WAGNER B, et al. Molecular profiling of 16S rRNA genes reveals diet-related differences of microbial communities in soil, gut, and casts of Lumbricus terrestris L. (Oligochaeta:Lumbricidae)[J]. FEMS Microbiology Ecology, 2004, 48(2):187-197.
doi: 10.1016/j.femsec.2004.01.007
|
[32] |
BERNARD L, CHAPUIS-LARDY L, RAZAFIMBELO T, et al. Endogeic earthworms shape bacterial functional communities and affect organic matter mineralization in a tropical soil[J]. The ISME Journal, 2012, 6(1):213-222.
doi: 10.1038/ismej.2011.87
|
[33] |
MUDALUNGU C M, TANGA C M, KELEMU S, et al. An overview of antimicrobial compounds from African edible insects and their associated microbiota[J]. Antibiotics, 2021, 10(6):621.
doi: 10.3390/antibiotics10060621
|
[34] |
LI X Y, MEI C, LUO X Y, et al. Dynamics of the intestinal bacterial community in black soldier fly larval guts and its influence on insect growth and development[J]. Insect Science, 2022:Doi:10.1111/1744-7917.13095.
|
[35] |
JIANG C L, JIN W Z, TAO X H, et al. Black soldier fly larvae (Hermetia illucens) strengthen the metabolic function of food waste biodegradation by gut microbiome[J]. Microbial Biotechnology, 2019, 12(3):528-543.
doi: 10.1111/mbt2.2019.12.issue-3
|
[36] |
ENGEL P, MORAN N A. The gut microbiota of insects-diversity in structure and function[J]. FEMS Microbiology Reviews, 2013, 37(5):699-735.
doi: 10.1111/1574-6976.12025
|
[37] |
BRUNO D, BONELLI M, DE FILIPPIS F, et al. The intestinal microbiota of Hermetia illucens larvae is affected by diet and shows a diverse composition in the different midgut regions[J]. Applied and Environmental Microbiology, 2019, 85(2):e01864-18.
|