畜牧与饲料科学 ›› 2025, Vol. 46 ›› Issue (5): 18-31.doi: 10.12160/j.issn.1672-5190.2025.05.003

• 动物营养与饲料科学 • 上一篇    下一篇

近红外光谱技术在全混合日粮氨基酸分析中的应用

王雅婷1, 骆雅萍2, 王成杰1,3   

  1. 1.内蒙古农业大学草业学院,内蒙古 呼和浩特 010011;
    2.云享农业(青岛)有限公司,山东 青岛 266000;
    3.内蒙古农业大学草地与资源教育部重点实验室,内蒙古 呼和浩特 010011
  • 收稿日期:2025-04-14 发布日期:2025-12-25
  • 通讯作者: 王成杰(1968—),男,教授,博士,博士生导师,主要研究方向为草地资源生态与管理。
  • 作者简介:王雅婷(1998—),女,硕士,主要研究方向为草地资源生态与管理。
  • 基金资助:
    内蒙古农业大学一流学科科研专项(YLXKZX-NND-029); 内蒙古自治区“科技兴蒙”国际合作引导项目(2021CG0020)

Application of Near-Infrared Spectroscopy in Amino Acid Analysis of Total Mixed Rations

WANG Yating1, LUO Yaping2, WANG Chengjie1,3   

  1. 1. College of Grassland Science, Inner Mongolia Agricultural University, Hohhot 010011, China;
    2. Yunxiang Agriculture (Qingdao) Co., Ltd., Qingdao 266000, China;
    3. Key Laboratory of Grassland Resources of the Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010011, China
  • Received:2025-04-14 Published:2025-12-25

摘要: [目的] 研究近红外光谱技术在全混合日粮(TMR)氨基酸分析中的应用,旨在满足全混合日粮营养成分快速和无损检测的市场需求。[方法] 试验采用近红外光谱技术结合偏最小二乘法(PLS),对采集自宁夏、云南、北京、黑龙江和内蒙古地区的282份奶牛全混合日粮建立17种氨基酸、粗蛋白(CP)及干物质(DM)含量的近红外预测模型。[结果] 精氨酸(ARG)、天门冬氨酸(ASP)、半胱氨酸(CYS)、谷氨酸(GLU)、甘氨酸(GLY)、组氨酸(HIS)、异亮氨酸(ILE)、亮氨酸(LEU)、赖氨酸(LYS)、苯丙氨酸(PHE)、丝氨酸(SER)、苏氨酸(THR)、酪氨酸(TYR)、缬氨酸(VAL)、粗蛋白(CP)及干物质(DM)的验证集决定系数Rp2分别为0.733、0.820、0.852、0.920、0.888、0.726、0.880、0.877、0.900、0.815、0.865、0.824、0.807、0.809、0.906、0.905,均大于0.64;验证集标准差(SEP)和系统偏差(Bias)均小于0.48;相对预测偏差(RPD)范围为2.072~3.564。蛋氨酸(MET)、脯氨酸(PRO)、丙氨酸(ALA)的Rp2分别为0.584、0.507、0.314,均小于0.64;三者RPD均低于1.75。[结论] 试验所建立的模型对以上多数营养成分(ASP、CYS、GLU、GLY、ILE、LEU、LYS、PHE、SER、THR、ARG、HIS、TYR、VAL、CP、DM)的预测准确度满足日常分析需求,部分氨基酸(MET、PRO、ALA)模型需通过优化光谱特征提取算法或扩展样本量进一步提升灵敏度。

关键词: 氨基酸, 近红外光谱仪, 全混合日粮, 预测模型

Abstract: [Objective] To investigate the application of near-infrared spectroscopy technology in the analysis of amino acids in total mixed rations (TMR), aiming to meet the market demand for rapid and non-destructive detection of TMR nutritional components. [Methods] Near-infrared spectroscopy technology combined with partial least squares (PLS) regression was utilized to establish near-infrared spectroscopy prediction models for the content of 17 amino acids, crude protein (CP), and dry matter (DM) using 282 dairy cow TMR samples collected from Ningxia, Yunnan, Beijing, Heilongjiang, and Inner Mongolia. [Results] The coefficients of determination for the validation set (Rp2) for arginine (ARG), aspartic acid (ASP), cysteine (CYS), glutamic acid (GLU), glycine (GLY), histidine (HIS), isoleucine (ILE), leucine (LEU), lysine (LYS), phenylalanine (PHE), serine (SER), threonine (THR), tyrosine (TYR), valine (VAL), crude protein (CP), and dry matter (DM) were 0.733, 0.820, 0.852, 0.920, 0.888, 0.726, 0.880, 0.877, 0.900, 0.815, 0.865, 0.824, 0.807, 0.809, 0.906, and 0.905, respectively, all greater than 0.64; the standard error of prediction (SEP) and systematic bias (Bias) for the validation set were all less than 0.48. The relative prediction deviation (RPD) ranged from 2.072 to 3.564. The Rp2 for methionine (MET), proline (PRO), and alanine (ALA) were 0.584, 0.507, and 0.314, respectively, all less than 0.64; their RPD values were below 1.75. [Conclusion] The established models in this study satisfy the requirements for prediction accuracy for routine analysis of most of the above nutritional components analyzed (ASP, CYS, GLU, GLY, ILE, LEU, LYS, PHE, SER, THR, ARG, HIS, TYR, VAL, CP, DM). The models for certain amino acids (MET, PRO, ALA) require further improvement in sensitivity by optimizing the spectral feature extraction algorithm or expanding the sample size.

Key words: amino acids, near-infrared spectrometer, total mixed ration, prediction model

中图分类号: