畜牧与饲料科学 ›› 2023, Vol. 44 ›› Issue (1): 38-43.doi: 10.12160/j.issn.1672-5190.2023.01.006
马贵,安彦昊,马莉花,沙萍,马燕芬
收稿日期:
2022-11-04
出版日期:
2023-01-30
发布日期:
2023-02-14
通讯作者:
马燕芬(1979—),女,研究员,博士,博士生导师,主要研究方向为动物营养与饲料。
作者简介:
马贵(1998—),男,所学专业为动物科学。
基金资助:
MA Gui,AN Yan-hao,MA Li-hua,SHA Ping,MA Yan-fen
Received:
2022-11-04
Online:
2023-01-30
Published:
2023-02-14
摘要:
脂肪肝是奶牛养殖过程中一种高发的营养代谢性紊乱病,会降低奶牛产奶量和平均使用寿命,影响后续生产性能的发挥,给奶牛养殖业造成巨大经济损失。组学技术的应用已经成为奶牛疾病研究的重要手段,可为预防和治疗奶牛脂肪肝提供理论基础和技术支撑。综述了代谢组学技术在筛选奶牛脂肪肝生物标志物中的应用研究进展,以期为生产实践中快速诊断和治疗奶牛脂肪肝提供参考。
中图分类号:
马贵, 安彦昊, 马莉花, 沙萍, 马燕芬. 代谢组学技术在筛选奶牛脂肪肝生物标志物中的应用研究进展[J]. 畜牧与饲料科学, 2023, 44(1): 38-43.
MA Gui, AN Yan-hao, MA Li-hua, SHA Ping, MA Yan-fen. Application of Metabonomics in Screening Biomarkers of Fatty Liver in Dairy Cows[J]. Animal Husbandry and Feed Science, 2023, 44(1): 38-43.
[1] |
CARPENTER A J, YLIOJA C M, VARGAS C F, et al. Early postpartum treatment of commercial dairy cows with nonsteroidal antiinflammatory drugs increases whole-lactation milk yield[J]. Journal of Dairy Science, 2016, 99(1):672-679.
doi: 10.3168/jds.2015-10048 |
[2] | 李胜利, 黄文明, 田雨佳, 等. 围产期奶牛能量代谢及调控[C]// 动物营养研究进展(2012年版). 北京: 中国畜牧兽医学会动物营养学分会, 2012:177-183. |
[3] | 何剑斌, 刘明春, 张文亮, 等. 奶牛血液生化指标的检测[J]. 中国兽医杂志, 2005, 41(2):14-17. |
[4] |
SUN X J, ZHAO B S, QU H C, et al. Sera and lungs metabonomics reveals key metabolites of resveratrol protecting against PAH in rats[J]. Biomedicine and Pharmacotherapy, 2021, 133:110910.
doi: 10.1016/j.biopha.2020.110910 pmid: 33378990 |
[5] |
SHI K R, LI R R, XU Z J, et al. Identification of crucial genetic factors, such as PPARγ, that regulate the pathogenesis of fatty liver disease in dairy cows is imperative for the sustainable development of dairy industry[J]. Animals, 2020, 10(4):639.
doi: 10.3390/ani10040639 |
[6] |
SHI K R, NIU F G, ZHANG Q, et al. Identification of whole-genome significant single nucleotide polymorphisms in candidate genes associated with serum biochemical traits in Chinese Holstein cattle[J]. Frontiers in Genetics, 2020, 11(1):163.
doi: 10.3389/fgene.2020.00163 |
[7] |
HU Z Y, YIN Z Y, LIN X Y, et al. Effects of feeding fatty acid calcium and the interaction of forage quality on production performance and biochemical indexes in early lactation cow[J]. Journal of Animal Physiology and Animal Nutrition, 2015, 99(5):899-904.
doi: 10.1111/jpn.12302 pmid: 25816839 |
[8] |
FARID A S, HONKAWA K, FATH E M, et al. Serum paraoxonase-1 as biomarker for improved diagnosis of fatty liver in dairy cows[J]. BMC Veterinary Research, 2013, 9:73.
doi: 10.1186/1746-6148-9-73 pmid: 23578174 |
[9] |
DU X L, SHI Z, PENG Z C, et al. Acetoacetate induces hepatocytes apoptosis by the ROS-mediated MAPKs pathway in ketotic cows[J]. Journal of Cellular Physiology, 2017, 232(12):3296-3308.
doi: 10.1002/jcp.25773 pmid: 28059455 |
[10] | 刘国文, 李心慰, 李小兵, 等. 奶牛生产疾病的早期诊断及群体监测[J]. 中国兽医学报, 2014, 34(9):1544-1550. |
[11] | 何生虎, 晁向阳, 王明成. 奶牛酮病的发病机理研究现状及进展[J]. 草食家畜, 2004(3):15-17. |
[12] |
OSPINA P A, NYDAM D V, STOKOL T, et al. Evaluation of nonesterified fatty acids and beta-hydroxybutyrate in transition dairy cattle in the northeastern United States: Critical thresholds for prediction of clinical diseases[J]. Journal of Dairy Science, 2010, 93(2):546-554.
doi: 10.3168/jds.2009-2277 pmid: 20105526 |
[13] |
BOBE G, YOUNG J W, BEITZ D C. Pathology, etiology, prevention, and treatment of fatty liver in dairy cows[J]. Journal of Dairy Science, 2004, 87(10):3105-3124.
doi: 10.3168/jds.S0022-0302(04)73446-3 |
[14] |
PATTI G J, YANES O, SIUZDAK G. Metabolomics: The apogee of the omics trilogy[J]. Nature Reviews Molecular Cell Biology, 2012, 13(4):263-269.
doi: 10.1038/nrm3314 |
[15] |
OLIVER S G. Yeast as a navigational aid in genome analysis[J]. Microbiology, 1997, 143(5):1483-1487.
doi: 10.1099/00221287-143-5-1483 |
[16] |
WISHART D S. Metabolomics for investigating physiological and pathophysiological processes[J]. Physiological Reviews, 2019, 99(4):1819-1875.
doi: 10.1152/physrev.00035.2018 pmid: 31434538 |
[17] | YU M Q, ZHU Y, CONG Q W, et al. Metabonomics research progress on liver diseases[J]. Canadian Journal of Gastroenterology and Hepatology, 2017, 2017:8467192. |
[18] |
KONG F L, BI Y L, WANG B, et al. Integrating RNA-sequencing and untargeted LC-MS metabolomics to evaluate the effect of lysine deficiency on hepatic functions in Holstein calves[J]. Amino Acids, 2020, 52(5):781-792.
doi: 10.1007/s00726-020-02852-1 pmid: 32372391 |
[19] |
SUN H Z, WANG D M, WANG B, et al. Metabolomics of four biofluids from dairy cows: Potential biomarkers for milk production and quality[J]. Journal of Proteome Research, 2015, 14(2):1287-1298.
doi: 10.1021/pr501305g |
[20] |
KIM H S, KIM E T, EOM J S, et al. Exploration of metabolite profiles in the biofluids of dairy cows by proton nuclear magnetic resonance analysis[J]. PLoS One, 2021, 16(1):e0246290.
doi: 10.1371/journal.pone.0246290 |
[21] |
ZHANG G S, MANDAL R, WISHART D S, et al. A multi-platform metabolomics approach identifies urinary metabolite signatures that differentiate ketotic from healthy dairy cows[J]. Frontiers in Veterinary Science, 2021, 8:595983.
doi: 10.3389/fvets.2021.595983 |
[22] |
WANG H B, HE Y, LI H, et al. Rumen fermentation, intramuscular fat fatty acid profiles and related rumen bacterial populations of Holstein bulls fed diets with different energy levels[J]. Applied Microbiology and Biotechnology, 2019, 103(12):4931-4942.
doi: 10.1007/s00253-019-09839-3 pmid: 31020378 |
[23] |
STARKE A, SCHMIDT S, HAUDUM A, et al. Evaluation of portal blood flow using transcutaneous and intraoperative Doppler ultrasonography in dairy cows with fatty liver[J]. Journal of Dairy Science, 2011, 94(6):2964-2971.
doi: 10.3168/jds.2011-4156 pmid: 21605766 |
[24] |
ZHANG L T, LIU T J, HU C Z, et al. Proteome analysis identified proteins associated with mitochondrial function and inflammation activation crucially regulating the pathogenesis of fatty liver disease[J]. BMC Genomics, 2021, 22(1):640.
doi: 10.1186/s12864-021-07950-2 pmid: 34481473 |
[25] |
DERVISHI E, ZHANG G S, ZWIERZCHOWSKI G, et al. Serum metabolic fingerprinting of pre-lameness dairy cows by GC-MS reveals typical profiles that can identify susceptible cows[J]. Journal of Proteomics, 2020, 213:103620.
doi: 10.1016/j.jprot.2019.103620 |
[26] |
ECKEL E F, ZHANG G, DERVISHI E, et al. Urinary metabolomics fingerprinting around parturition identifies metabolites that differentiate lame dairy cows from healthy ones[J]. Animal, 2020, 14(10):2138-2149.
doi: 10.1017/S1751731120001172 pmid: 32498732 |
[27] |
ZHANG G S, ZWIERZCHOWSKI G, MANDAL R, et al. Serum metabolomics identifies metabolite panels that differentiate lame dairy cows from healthy ones[J]. Metabolomics, 2020, 16(6):73.
doi: 10.1007/s11306-020-01693-z pmid: 32535675 |
[28] |
ZHANG L T, HU C Z, ZHANG X, et al. Protein acetylation in mitochondria plays critical functions in the pathogenesis of fatty liver disease[J]. BMC Genomics, 2020, 21(1):435.
doi: 10.1186/s12864-020-06837-y |
[29] |
ZWIERZCHOWSKI G, ZHANG G S, MANDAL R, et al. Milk metabotyping identifies metabolite alterations in the whole raw milk of dairy cows with lameness[J]. Journal of Agricultural and Food Chemistry, 2020, 68(15):4507-4514.
doi: 10.1021/acs.jafc.9b08312 pmid: 32223231 |
[30] |
ZHANG X, LIU T J, HOU X P, et al. Multi-channel metabolomics analysis identifies novel metabolite biomarkers for the early detection of fatty liver disease in dairy cows[J]. Cells, 2022, 11(18):2883.
doi: 10.3390/cells11182883 |
[31] |
LUO Z Z, SHEN L H, JIANG J, et al. Plasma metabolite changes in dairy cows during parturition identified using untargeted metabolomics[J]. Journal of Dairy Science, 2019, 102(5):4639-4650.
doi: S0022-0302(19)30194-8 pmid: 30827559 |
[32] |
LI H T, DONG K, FANG Q C, et al. High serum level of fibroblast growth factor 21 is an independent predictor of non-alcoholic fatty liver disease: A 3-year prospective study in China[J]. Journal of Hepatology, 2013, 58(3):557-563.
doi: 10.1016/j.jhep.2012.10.029 pmid: 23142063 |
[33] |
BADMAN M K, PISSIOS P, KENNEDY A R, et al. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states[J]. Cell Metabolism, 2007, 5(6):426-437.
doi: 10.1016/j.cmet.2007.05.002 pmid: 17550778 |
[34] | BIONAZ M, CHEN S W, KHAN M J, et al. Functional role of PPARs in ruminants: Potential targets for fine-tuning metabolism during growth and lactation[J]. PPAR Research, 2013, 2013:684159. |
[35] |
SHEN Y Z, CHEN L M, YANG W Z, et al. Exploration of serum sensitive biomarkers of fatty liver in dairy cows[J]. Scientific Reports, 2018, 8:13574.
doi: 10.1038/s41598-018-31845-0 pmid: 30206404 |
[36] | 汪雅哲. 围产期健康奶牛和脂肪肝奶牛血液代谢谱的比较分析[D]. 长春: 吉林大学, 2020. |
[37] |
OTA T, GAYET C, GINSBERG H N. Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents[J]. The Journal of Clinical Investigation, 2008, 118(1):316-332.
doi: 10.1172/JCI32752 |
[38] |
SCHAREN M, SNEDEC T, RIEFKE B, et al. Aspects of transition cow metabolomics-Part Ⅰ:Effects of a metaphylactic butaphosphan and cyanocobalamin treatment on the metabolome in liver, blood, and urine in cows with different liver metabotypes[J]. Journal of Dairy Science, 2021, 104(8):9205-9226.
doi: 10.3168/jds.2020-19055 |
[39] | 张璇. 围产期奶牛脂肪肝疾病诊断的代谢标记物筛选[D]. 泰安: 山东农业大学, 2020. |
[40] |
MAURICE J, MANOUSOU P. Non-alcoholic fatty liver disease[J]. Clinical Medicine, 2018, 18(3):245-250.
doi: 10.7861/clinmedicine.18-3-245 |
[41] |
JI M, JO Y, CHOI S J, et al. Plasma metabolomics and machine learning-driven novel diagnostic signature for non-alcoholic steatohepatitis[J]. Biomedicines, 2022, 10(7):1669.
doi: 10.3390/biomedicines10071669 |
[42] |
FAN Z K, MA W J, ZHANG W, et al. Elevated serum phosphatidylcholine (16∶1/22∶6) levels promoted by fish oil and vitamin D3 are highly correlated with biomarkers of non-alcoholic fatty liver disease in Chinese subjects[J]. Food and Function, 2022, 13(22):11705-11714.
doi: 10.1039/D2FO02349K |
[43] |
CANTÓ C, HOUTKOOPER R H, PIRINEN E, et al. The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity[J]. Cell Metabolism, 2012, 15(6):838-847.
doi: 10.1016/j.cmet.2012.04.022 |
[44] |
GARIANI K, MENZIES K J, RYU D, et al. Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice[J]. Hepatology, 2016, 63(4):1190-1204.
doi: 10.1002/hep.28245 pmid: 26404765 |
[45] |
LEE H J, YANG S J. Nicotinamide riboside regulates inflammation and mitochondrial markers in AML12 hepatocytes[J]. Nutrition Research and Practice, 2019, 13(1):3-10.
doi: 10.4162/nrp.2019.13.1.3 pmid: 30788050 |
[46] |
BROWN K D, MAQSOOD S, HUANG J Y, et al. Activation of SIRT3 by the NAD+ precursor nicotinamide riboside protects from noise-induced hearing loss[J]. Cell Metabolism, 2014, 20(6):1059-1068.
doi: 10.1016/j.cmet.2014.11.003 |
[47] |
ZHOU C C, YANG X, HUA X, et al. Hepatic NAD(+) deficiency as a therapeutic target for non-alcoholic fatty liver disease in ageing[J]. British Journal of Pharmacology, 2016, 173(15):2352-2368.
doi: 10.1111/bph.v173.15 |
[48] | 孙雨航, 夏成, 舒适, 等. 应用iTRAQ-HPLC-MS技术筛选奶牛脂肪肝病尿液蛋白标志物[J]. 畜牧兽医学报, 2014, 45(5):844-852. |
[49] | 李若瑜, 苗宇船, 李明磊, 等. 大鼠非酒精性脂肪肝肝郁脾虚证的尿液代谢组学研究[J]. 中国中医基础医学杂志, 2019, 25(4):467-470. |
[1] | 张莹, 王丽芳, 张腾龙, 钟华晨, 宋洁, 郭晨阳, 刘嘉琳. 内蒙古不同地区奶牛产奶量及乳品质比较研究[J]. 畜牧与饲料科学, 2024, 45(2): 82-87. |
[2] | 艾俊杰, 戴小华, 何薇, 宋林卿, 王彦斌, 王利敏, 冯浩强. 干乳期奶牛隐性乳腺炎主要致病菌的分离、鉴定及2种抗菌药物的体外抗菌效果评价[J]. 畜牧与饲料科学, 2024, 45(2): 122-128. |
[3] | 王潇, 李慧, 苏少锋, 赵濛, 田菁, 赵鸿雁, 左兰明, 梁智杰, 王金环, 田如刚. 内蒙古呼伦贝尔地区本土牛牛肉黄脂现象的相关基因和代谢组学研究[J]. 畜牧与饲料科学, 2023, 44(6): 1-12. |
[4] | 周璇, 苏日娜, 李秀男, 白苏友拉图, 乌达巴拉, 杨燕燕, 乌日罕, 何亭漪, 乌吉斯古楞, 王标, 何牧仁. 荷斯坦奶牛与和牛活体采卵-体外受精(OPU/IVF)体系的建立及应用[J]. 畜牧与饲料科学, 2023, 44(3): 1-6. |
[5] | 郭晨阳, 刘嘉琳, 张腾龙, 王丽芳, 宋洁, 钟华晨. 复合植物提取物对奶牛瘤胃细菌菌群的影响[J]. 畜牧与饲料科学, 2023, 44(1): 44-53. |
[6] | 郝海生, 杜卫华, 庞云渭, 邹惠影, 赵学明, 赵善江, 朱化彬. 性控精液对奶牛体内胚胎质量、发育和移植妊娠率的影响[J]. 畜牧与饲料科学, 2023, 44(1): 71-75. |
[7] | 窦文丽, 宝华, 曹佩佩, 孙奕烁, 刘吉国, 杨文飞, 马云, 马燕芬. 腺苷酸活化蛋白激酶在奶牛疾病中的作用研究进展[J]. 畜牧与饲料科学, 2022, 43(6): 6-13. |
[8] | 杨坤, 胡红莲, 李大彪, 李兰柱, 张剑霞, 钱娜, 于良义, 白梦婷, 郭琳, 高民. 奶牛亚急性瘤胃酸中毒(SARA)的易感因素及其对瘤胃功能的影响[J]. 畜牧与饲料科学, 2022, 43(5): 55-60. |
[9] | 李晓燕, 王新, 李红, 杨云洪, 李东全, 车太龙. 日粮中添加不同水平氧化镁对奶牛泌乳性能、血清镁含量及尿液pH值的影响[J]. 畜牧与饲料科学, 2022, 43(5): 74-78. |
[10] | 贾梓渤, 彭健康, 朱燕, 陈海峰, 王婧. 奶牛乳房炎金黄色葡萄球菌的分离鉴定及药敏试验[J]. 畜牧与饲料科学, 2022, 43(1): 124-128. |
[11] | 韩姗姗, 李忠玲, 张强, 岳淑宁. 奶牛养殖发酵床不同深度菌群结构及其应用效果分析[J]. 畜牧与饲料科学, 2021, 42(6): 39-45. |
[12] | 韩萌, 彭华, 王晶, 祝文琪, 董晓霞. 丹麦奶业发展及与中国合作现状[J]. 畜牧与饲料科学, 2021, 42(6): 80-91. |
[13] | 张燕飞, 王丽芳. 植物有效成分提取工艺及其对细菌性奶牛乳房炎的治疗作用机制研究进展[J]. 畜牧与饲料科学, 2021, 42(6): 115-123. |
[14] | 何思锐, 武瑞, 连帅, 王建发, 张迪, 高丽. 大庆市某牧场牛白血病病毒感染情况调查[J]. 畜牧与饲料科学, 2021, 42(3): 102-106. |
[15] | 李忠玲, 岳淑宁, 付博, 韩姗姗, 张红艳. 发酵床技术在奶牛养殖中的应用研究进展[J]. 畜牧与饲料科学, 2021, 42(1): 63-68. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||