畜牧与饲料科学 ›› 2023, Vol. 44 ›› Issue (3): 33-41.doi: 10.12160/j.issn.1672-5190.2023.03.005
义拉勒特1,刘威2,云涛3,李胜利2,张春华2,杨鼎2,萨初拉2,金鹿2,张崇志2,胡晓晓2,孙海洲2
收稿日期:
2023-02-14
出版日期:
2023-05-30
发布日期:
2023-07-12
通讯作者:
孙海洲(1970—),男,研究员,博士,博士生导师,主要从事动物营养与饲料科学研究工作。
作者简介:
义拉勒特(1999—),男,硕士研究生,主要研究方向为动物营养与饲料科学。|刘威(1986—),男,副研究员,硕士,主要研究方向为动物营养与免疫。
基金资助:
Yilalete 1,LIU Wei2,YUN Tao3,LI Shengli2,ZHANG Chunhua2,YANG Ding2,Sachula 2,JIN Lu2,ZHANG Chongzhi2,HU Xiaoxiao2,SUN Haizhou2
Received:
2023-02-14
Online:
2023-05-30
Published:
2023-07-12
摘要:
植物精油具有良好的抑菌、抗炎、抗氧化特性,在畜禽饲料中添加使用具有安全、高效、毒副作用小、残留量低等优点,在成为饲用抗生素替代品方面有较高的开发潜力和研究价值。介绍了植物精油的理化特性,综述了植物精油微胶囊化工艺和制备方法及植物精油在畜禽养殖业中的应用研究进展,以期为畜禽用植物精油微胶囊制剂的研究与开发及植物精油在畜禽生产中的科学应用提供参考。
中图分类号:
义拉勒特, 刘威, 云涛, 李胜利, 张春华, 杨鼎, 萨初拉, 金鹿, 张崇志, 胡晓晓, 孙海洲. 植物精油微胶囊的制备方法及其在畜禽养殖业中的应用[J]. 畜牧与饲料科学, 2023, 44(3): 33-41.
Yilalete , LIU Wei, YUN Tao, LI Shengli, ZHANG Chunhua, YANG Ding, Sachula , JIN Lu, ZHANG Chongzhi, HU Xiaoxiao, SUN Haizhou. Research Progress in Preparation Methods of Plant Essential Oil Microcapsule and Application in Livestock and Poultry Farming[J]. Animal Husbandry and Feed Science, 2023, 44(3): 33-41.
[1] | 聂振昌, 程宗佳, 李辉, 等. 植物精油的微胶囊化及在养猪生产中的应用研究[J]. 饲料博览, 2021(5):10-15. |
[2] | 冯栋梁, 刁蓝宇, 邹彩霞, 等. 植物精油的生物学活性及其在动物生产中的应用[J]. 动物营养学报, 2018, 30(11):4334-4341. |
[3] |
刘旺景, 唐德富. 植物精油在反刍动物营养中的研究进展[J]. 动物营养学报, 2021, 33(9):4810-4817.
doi: 10.3969/j.issn.1006-267x.2021.09.002 |
[4] |
李艳玲, 唐炜轩. 植物精油在反刍动物生产中的应用研究进展[J]. 动物营养学报, 2022, 34(10):6411-6419.
doi: 10.3969/j.issn.1006-267x.2022.10.035 |
[5] |
SOUSA V I, PARENTE J F, MARQUES J F, et al. Microencapsulation of essential oils: A review[J]. Polymers, 2022, 14(9):1730.
doi: 10.3390/polym14091730 |
[6] |
KOKKINI S, KAROUSOU R, DARDIOTI A, et al. Autumn essential oils of Greek oregano[J]. Phytochemistry, 1997, 44(5):883-886.
doi: 10.1016/S0031-9422(96)00576-6 |
[7] |
BAKKALI F, AVERBECK S, AVERBECK D, et al. Biological effects of essential oils:A review[J]. Food and Chemical Toxicology, 2008, 46(2):446-475.
doi: 10.1016/j.fct.2007.09.106 |
[8] | 周彦成. 密花香薷精油的提取及其对兔疥螨的杀灭活性研究[D]. 雅安: 四川农业大学, 2018. |
[9] |
DONSI F, ANNUNZIATA M, SESSA M, et al. Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods[J]. LWT, 2011, 44(9):1908-1914.
doi: 10.1016/j.lwt.2011.03.003 |
[10] | DUBEY R. Microencapsulation technology and applications[J]. Defence Science Journal, 2009, 59:82-95. |
[11] |
PAULO F, SANTOS L. Design of experiments for microencapsulation applications: A review[J]. Materials Science and Engineering:C, 2017, 77:1327-1340.
doi: 10.1016/j.msec.2017.03.219 |
[12] |
FANG Z X, BHANDARI B. Encapsulation of polyphenols:A review[J]. Trends in Food Science and Technology, 2010, 21(10):510-523.
doi: 10.1016/j.tifs.2010.08.003 |
[13] |
BAKRY A M, ABBAS S, ALI B, et al. Microencapsulation of oils:A comprehensive review of benefits, techniques, and applications[J]. Comprehensive Reviews in Food Science and Food Safety, 2016, 15(1):143-182.
doi: 10.1111/1541-4337.12179 |
[14] |
BENJEMAA M, NEVES M A, FALLEH H, et al. Nanoencapsulation of Thymus capitatus essential oil: Formulation process, physical stability characterization and antibacterial efficiency monitoring[J]. Industrial Crops and Products, 2018, 113:414-421.
doi: 10.1016/j.indcrop.2018.01.062 |
[15] |
MCCLEMENTS D J, DECKER E A, PARK Y, et al. Structural design principles for delivery of bioactive components in nutraceuticals and functional foods[J]. Critical Reviews in Food Science and Nutrition, 2009, 49(6):577-606.
doi: 10.1080/10408390902841529 pmid: 19484636 |
[16] | 邱夕兰, 彭善丽, 程磊, 等. 植物精油微胶囊的制备及在食品保鲜中的应用[J]. 食品研究与开发, 2021, 42(6):205-210. |
[17] | VUJANOVIC M, DJUROVIC S, RADOJKOVIC M. Chemical composition of essential oils of elderberry (Sambucus nigra L.) flowers and fruits[J]. Acta Periodica Technologica, 2021(52):229-237. |
[18] |
TANG C X, LI Y Z, PUN J, et al. Polydopamine microcapsules from cellulose nanocrystal stabilized Pickering emulsions for essential oil and pesticide encapsulation[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 570:403-413.
doi: 10.1016/j.colsurfa.2019.03.049 |
[19] |
CAI C C, MA R J, DUAN M W, et al. Preparation and antimicrobial activity of thyme essential oil microcapsules prepared with gum Arabic[J]. RSC Advances, 2019, 9(34):19740-19747.
doi: 10.1039/C9RA03323H |
[20] |
NGAMEKAUE N, CHITPRASERT P. Effects of beeswax-carboxymethyl cellulose composite coating on shelf-life stability and intestinal delivery of holy basil essential oil-loaded gelatin microcapsules[J]. International Journal of Biological Macromolecules, 2019, 135:1088-1097.
doi: S0141-8130(19)33659-1 pmid: 31173831 |
[21] |
BEZERRA F M, CARMONA O G, CARMONA C G, et al. Controlled release of microencapsulated citronella essential oil on cotton and polyester matrices[J]. Cellulose, 2016, 23(2):1459-1470.
doi: 10.1007/s10570-016-0882-5 |
[22] |
BAIOCCO D, PREECE J A, ZHANG Z B. Microcapsules with a fungal chitosan-gum Arabic-maltodextrin shell to encapsulate health-beneficial peppermint oil[J]. Food Hydrocolloids for Health, 2021, 1:100016.
doi: 10.1016/j.fhfh.2021.100016 |
[23] |
SCARFATO P, AVALLONE E, IANNELLI P, et al. Synthesis and characterization of polyurea microcapsules containing essential oils with antigerminative activity[J]. Journal of Applied Polymer Science, 2007, 105(6): 3568-3577.
doi: 10.1002/(ISSN)1097-4628 |
[24] |
LI Y Z, LIU J M, HE X F, et al. Preparation of cinnamon oil-loaded antibacterial composite microcapsules by in situ polymerization of Pickering emulsion templates[J]. Macromolecular Materials and Engineering, 2020, 305(3): 1900851.
doi: 10.1002/mame.v305.3 |
[25] |
WIRJOSENTONO B, MARPAUNG L. Microencapsulation of ginger-based essential oil (Zingiber cassumunar roxb) with chitosan and oil palm trunk waste fiber prepared by spray-drying method[J]. Case Studies in Thermal Engineering, 2020, 18:100606.
doi: 10.1016/j.csite.2020.100606 |
[26] |
DE BARROS F R V, BORGES S V, BOTREL D A. Gum Arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil[J]. Carbohydrate Polymers, 2014, 101:524-532.
doi: 10.1016/j.carbpol.2013.09.083 pmid: 24299808 |
[27] |
YANG Y H, LI X Z, ZHANG S. Preparation methods and release kinetics of Litsea cubeba essential oil microcapsules[J]. RSC Advances, 2018, 8(52):29980-29987.
doi: 10.1039/C8RA05769A |
[28] |
RAEISI S, OJAGH S M, QUEK S Y, et al. Nano-encapsulation of fish oil and garlic essential oil by a novel composition of wall material: Persian gum-chitosan[J]. LWT, 2019, 116:108494.
doi: 10.1016/j.lwt.2019.108494 |
[29] | 王博瑶, 郑晨旭, 丛玉艳. 植物精油对瘤胃发酵的调控机制研究进展[J]. 中国畜牧杂志, 2022, 58(9):99-103. |
[30] |
OH S Y, YUN W, LEE J H, et al. Effects of essential oil (blended and single essential oils) on anti-biofilm formation of Salmonella and Escherichia coli[J]. Journal of Animal Science and Technology, 2017, 59(1): 4.
doi: 10.1186/s40781-017-0127-7 |
[31] |
MCINTOSH F M, WILLIAMS P, LOSA R, et al. Effects of essential oils on ruminal microorganisms and their protein metabolism[J]. Applied and Environmental Microbiology, 2003, 69(8):5011-5014.
doi: 10.1128/AEM.69.8.5011-5014.2003 pmid: 12902303 |
[32] |
ANDO S, NISHIDA T, ISHIDA M, et al. Effect of peppermint feeding on the digestibility, ruminal fermentation and protozoa[J]. Livestock Production Science, 2003, 82(2/3):245-248.
doi: 10.1016/S0301-6226(03)00012-5 |
[33] |
PATRA A K. Effects of essential oils on rumen fermentation, microbial ecology and ruminant production[J]. Asian Journal of Animal and Veterinary Advances, 2011, 6(5):416-428.
doi: 10.3923/ajava.2011.416.428 |
[34] | PATRA A K, YU Z T. Essential oils affect populations of some rumen bacteria in vitro as revealed by microarray (RumenBactArray) analysis[J]. Frontiers in Microbiology, 2015, 6:297. |
[35] |
KIM H, JUNG E, LEE H G, et al. Essential oil mixture on rumen fermentation and microbial community - An in vitro study[J]. Asian-Australasian Journal of Animal Sciences, 2019, 32(6):808-814.
doi: 10.5713/ajas.18.0652 |
[36] |
ALAGAWANY M, FARAG M R, ABDELNOUR S A, et al. A review on the beneficial effect of thymol on health and production of fish[J]. Reviews in Aquaculture, 2021, 13(1):632-641.
doi: 10.1111/raq.v13.1 |
[37] |
LAN W, YANG C L. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation[J]. Science of the Total Environment, 2019, 654:1270-1283.
doi: 10.1016/j.scitotenv.2018.11.180 |
[38] |
RIRA M, CHENTLI A, BOUFENERA S, et al. Effects of plants containing secondary metabolites on ruminal methanogenesis of sheep in vitro[J]. Energy Procedia, 2015, 74:15-24.
doi: 10.1016/j.egypro.2015.07.513 |
[39] |
PATRA A K. Enteric methane mitigation technologies for ruminant livestock: A synthesis of current research and future directions[J]. Environmental Monitoring and Assessment, 2012, 184(4):1929-1952.
doi: 10.1007/s10661-011-2090-y pmid: 21547374 |
[40] |
CARDOZO P W, CALSAMIGLIA S, FERRET A, et al. Effects of natural plant extracts on ruminal protein degradation and fermentation profiles in continuous culture[J]. Journal of Animal Science, 2004, 82(11):3230-3236.
pmid: 15542469 |
[41] | 张然, 郑琛, 闫晓刚, 等. 体外产气法研究牛至油对绵羊瘤胃发酵特性和甲烷产量的影响[J]. 动物营养学报, 2018, 30(8):3168-3175. |
[42] | CHAUDHARY P P, GOEL N, BAKER G, et al. Influence of essential oils supplementation on rumen fermentation profile and ruminal microbial population in vitro[J]. Journal of Science, 2016, 1(4):25-34. |
[43] |
BENCHAAR C. Diet supplementation with thyme oil and its main component thymol failed to favorably alter rumen fermentation, improve nutrient utilization, or enhance milk production in dairy cows[J]. Journal of Dairy Science, 2021, 104(1):324-336.
doi: 10.3168/jds.2020-18401 pmid: 33131821 |
[44] | AMARAL A B, DA SILVA M V, DA SILVA L S C. Lipid oxidation in meat: Mechanisms and protective factors-A review[J]. Food Science and Technology, 2018, 38(Suppl 1): 1-15. |
[45] |
VIUDA-MARTOS M, RUIZ NAVAJAS Y, SÁNCHEZ ZAPATA E, et al. Antioxidant activity of essential oils of five spice plants widely used in a Mediterranean diet[J]. Flavour and Fragrance Journal, 2010, 25(1):13-19.
doi: 10.1002/ffj.v25:1 |
[46] |
YOUDIM K A, DEANS S G. Effect of thyme oil and thymol dietary supplementation on the antioxidant status and fatty acid composition of the ageing rat brain[J]. The British Journal of Nutrition, 2000, 83(1):87-93.
doi: 10.1017/S000711450000012X |
[47] |
ESTÉVEZ M, CAVA R. Effectiveness of rosemary essential oil as an inhibitor of lipid and protein oxidation: Contradictory effects in different types of frankfurters[J]. Meat Science, 2006, 72(2):348-355.
doi: 10.1016/j.meatsci.2005.08.005 pmid: 22061564 |
[48] |
JUGREET B S, SUROOWAN S, KANNAN R R R, et al. Chemistry, bioactivities, mode of action and industrial applications of essential oils[J]. Trends in Food Science and Technology, 2020, 101:89-105.
doi: 10.1016/j.tifs.2020.04.025 |
[49] |
ZHAI H X, LIU H, WANG S K, et al. Potential of essential oils for poultry and pigs[J]. Animal Nutrition, 2018, 4(2):179-186.
doi: 10.1016/j.aninu.2018.01.005 pmid: 30140757 |
[50] | MIMICA-DUKIC N, ORCIC D, LESJAK M, et al. Essential oils as powerful antioxidants: Misconception or scientific fact?[M]//ACS Symposium Series. Washington, DC: American Chemical Society, 2016:187-208. |
[51] |
MIGUEL G, CRUZ C, FALEIRO M L, et al. Salvia officinalis L. essential oils:Effect of hydrodistillation time on the chemical composition, antioxidant and antimicrobial activities[J]. Natural Product Research, 2011, 25(5):526-541.
doi: 10.1080/14786419.2010.499513 |
[52] |
BENCHAAR C, GREATHEAD H. Essential oils and opportunities to mitigate enteric methane emissions from ruminants[J]. Animal Feed Science and Technology, 2011, 166/167:338-355.
doi: 10.1016/j.anifeedsci.2011.04.024 |
[53] |
GIOVANNINI D, GISMONDI A, BASSO A, et al. Lavandula angustifolia mill. essential oil exerts antibacterial and anti-inflammatory effect in macrophage mediated immune response to Staphylococcus aureus[J]. Immunological Investigations, 2016, 45(1):11-28.
doi: 10.3109/08820139.2015.1085392 |
[54] |
XU Y T, LAHAYE L, HE Z X, et al. Micro-encapsulated essential oils and organic acids combination improves intestinal barrier function, inflammatory responses and microbiota of weaned piglets challenged with enterotoxigenic Escherichia coli F4 (K88+)[J]. Animal Nutrition, 2020, 6:269-277.
doi: 10.1016/j.aninu.2020.04.004 |
[55] |
XIE Z, ZHAO Q Q, WANG H, et al. Effects of antibacterial peptide combinations on growth performance, intestinal health, and immune function of broiler chickens[J]. Poultry Science, 2020, 99(12): 6481-6492.
doi: 10.1016/j.psj.2020.08.068 pmid: 33248563 |
[56] |
LIU S D, SONG M H, YUN W, et al. Effect of carvacrol essential oils on immune response and inflammation-related genes expression in broilers challenged by lipopolysaccharide[J]. Poultry Science, 2019, 98(5): 2026-2033.
doi: 10.3382/ps/pey575 pmid: 30590708 |
[57] |
DE NARDI R, MARCHESINI G, PLAIZIER J C, et al. Use of dicarboxylic acids and polyphenols to attenuate reticular pH drop and acute phase response in dairy heifers fed a high grain diet[J]. BMC Veterinary Research, 2014, 10:277.
doi: 10.1186/s12917-014-0277-5 pmid: 25425091 |
[58] |
BURT S. Essential oils: Their antibacterial properties and potential applications in foods-A review[J]. International Journal of Food Microbiology, 2004, 94(3):223-253.
doi: 10.1016/j.ijfoodmicro.2004.03.022 |
[59] | ABBOUD, RAMMOUZ E. In vitro and in vivo antimicrobial activity of two essential oils Thymus vulgaris and Lavandula angustifolia against bovine Staphylococcus and Streptococcus mastitis pathogen[J]. Middle East Journal of Agriculture Research, 2015, 4(4):975-983. |
[60] |
RUAN D, FAN Q L, FOUAD A M, et al. Effects of dietary oregano essential oil supplementation on growth performance, intestinal antioxidative capacity, immunity, and intestinal microbiota in yellow-feathered chickens[J]. Journal of Animal Science, 2021, 99(2):skab033.
doi: 10.1093/jas/skab033 |
[61] |
EL-ESSAWY A M, ANELE U Y, ABDEL-WAHED A M, et al. Effects of anise, clove and thyme essential oils supplementation on rumen fermentation, blood metabolites, milk yield and milk composition in lactating goats[J]. Animal Feed Science and Technology, 2021, 271:114760.
doi: 10.1016/j.anifeedsci.2020.114760 |
[62] |
LI P F, PIAO X S, RU Y J, et al. Effects of adding essential oil to the diet of weaned pigs on performance, nutrient utilization, immune response and intestinal health[J]. Asian-Australasian Journal of Animal Sciences, 2012, 25(11):1617-1626.
doi: 10.5713/ajas.2012.12292 pmid: 25049525 |
[63] | HALLE I, THOMANN R, BAUERMANN U, et al. Effects of a graded supplementation of herbs and essential oils in broiler feed on growth and carcass traits[J]. Landbauforschung Volkenrode, 2005, 54(4):219-229. |
[64] |
CASTRO F E S, ROMA L C Jr, EZEQUIEL J M B, et al. Effect of thyme essential oil supplementation on feed intake, apparent digestibility, rumen fermentation, blood parameters and in vitro methane yield of Nellore cattle[J]. Livestock Science, 2021, 244:104349.
doi: 10.1016/j.livsci.2020.104349 |
[1] | 唐怡莹, 刘金松, 肖世平, 刘玉兰. 日粮添加不同植物精油制剂对断奶仔猪生长性能、肠道消化酶活力及血清免疫球蛋白含量的影响[J]. 畜牧与饲料科学, 2024, 45(1): 25-30. |
[2] | 李莲红, 韩学琴, 罗会英, 邓红山, 刘进娣, 刘昀, 金杰, 张美艳. 香茅的生物活性及其在畜禽生产中的应用研究进展[J]. 畜牧与饲料科学, 2023, 44(6): 57-65. |
[3] | 林彭楚彬, 孙三山, 高亚杰, 阮超, 严杜建. FABPs基因家族在动物育种领域的研究进展[J]. 畜牧与饲料科学, 2023, 44(6): 76-81. |
[4] | 任仕航, 段慧慧, 杜向党, 商艳红. 噬菌体在畜禽业中的应用研究进展[J]. 畜牧与饲料科学, 2023, 44(6): 123-128. |
[5] | 王兴文, 于耀然, 刘浩, 余泽田, 董晓霞, 彭华. 加拿大畜禽遗传资源保护与利用现状及对我国的启示[J]. 畜牧与饲料科学, 2023, 44(5): 63-70. |
[6] | 孔祥飞,张东生. 畜禽业碳排放的时空特征及减排路径——以河南省为例[J]. 畜牧与饲料科学, 2023, 44(4): 61-69. |
[7] | 潘杨溯, 贺杨, 李永香, 曹振辉, 黄英, 安清聪, 张春勇, 赵素梅, 胡洪, 潘洪彬. 微生态制剂在畜牧业生产中的应用研究展望[J]. 畜牧与饲料科学, 2023, 44(1): 64-70. |
[8] | 韩战强,马亚姣,霍磊,李鹏伟,刘长春,孟燕飞. 黄芪的生物学活性及其在畜禽生产中的应用研究进展[J]. 畜牧与饲料科学, 2022, 43(6): 48-52. |
[9] | 方洲, 马学虎, 安彦昊, 孙奕烁, 窦文丽, 马燕芬. 畜禽氧化应激与炎症及多酚的干预作用[J]. 畜牧与饲料科学, 2022, 43(2): 14-22. |
[10] | 郭常莲, 张英, 栗林. 畜禽良种繁育技术及其应用的经济学思考[J]. 畜牧与饲料科学, 2022, 43(1): 93-97. |
[11] | 罗超维, 杨柳, 吴仕辉, 谢莉, 李祥坤, 向海. 饲料添加剂调节畜禽肠道菌群及其生长性状的研究进展[J]. 畜牧与饲料科学, 2021, 42(6): 18-23. |
[12] | 谢洁微, 胡文锋, 李雪玲, 胡斌. 利用黑水虻处理畜禽粪便中残留抗菌药物研究进展[J]. 畜牧与饲料科学, 2021, 42(5): 73-78. |
[13] | 张心壮, 曹迪, 格日乐其木格, 芒来. 畜禽生产中氧化应激分子调控机理及营养策略研究进展[J]. 畜牧与饲料科学, 2021, 42(4): 29-36. |
[14] | 张莹, 董晓雪, 田勇, 贾铁斌, 张鹤亮. 抗生素替代品在养猪生产中的应用研究进展[J]. 畜牧与饲料科学, 2021, 42(3): 32-38. |
[15] | 由大鹏, 张絮颖, 刘丽娜, 红敏, 吴国庆, 高凤林. 替代抗生素饲料添加剂研究进展[J]. 畜牧与饲料科学, 2021, 42(3): 39-42. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||