畜牧与饲料科学 ›› 2023, Vol. 44 ›› Issue (3): 55-62.doi: 10.12160/j.issn.1672-5190.2023.03.008
孔德庆1,2,3,4,秦箐1,2,3,4,张崇妍1,2,3,4,刘治辰1,2,3,4,徐晓龙1,2,3,4,兰茗熙1,2,3,4,王一川1,2,3,4,张景文1,2,3,4,赵丹1,2,3,4,王志新1,2,3,4,李金泉1,2,3,4,刘志红1,2,3,4
收稿日期:
2023-03-08
出版日期:
2023-05-30
发布日期:
2023-07-12
通讯作者:
刘志红(1977—),女,教授,博士,主要研究方向为动物分子遗传与育种。
作者简介:
孔德庆(1998—),男,硕士研究生,主要研究方向为动物遗传育种。
基金资助:
KONG Deqing1,2,3,4,QIN Qing1,2,3,4,ZHANG Chongyan1,2,3,4,LIU Zhichen1,2,3,4,XU Xiaolong1,2,3,4,LAN Mingxi1,2,3,4,WANG Yichuan1,2,3,4,ZHANG Jingwen1,2,3,4,ZHAO Dan1,2,3,4,WANG Zhixin1,2,3,4,LI Jinquan1,2,3,4,LIU Zhihong1,2,3,4
Received:
2023-03-08
Online:
2023-05-30
Published:
2023-07-12
摘要:
骨骼肌是畜禽机体主要组成部分,骨骼肌中肌纤维的发育过程漫长且受到多种因素的调控。畜禽肌纤维发育相关基因的调控机制相对复杂,且这些基因本身也受其他因子调控。相关的调控因子在畜禽体内可能不足,需要通过添加外源性物质来促进肌纤维发育。通过整合近5年国内外肌纤维发育研究文献,结合肌纤维发育相关基因的特点,介绍了影响畜禽肌纤维发育相关基因的外源性物质,重点阐述了这些外源性物质对肌纤维发育的调控作用,并对今后肌纤维发育相关基因调控的研究进行了展望,以期为后续研究提供参考。
中图分类号:
孔德庆, 秦箐, 张崇妍, 刘治辰, 徐晓龙, 兰茗熙, 王一川, 张景文, 赵丹, 王志新, 李金泉, 刘志红. 影响肌纤维发育的不同外源性物质研究进展[J]. 畜牧与饲料科学, 2023, 44(3): 55-62.
KONG Deqing, QIN Qing, ZHANG Chongyan, LIU Zhichen, XU Xiaolong, LAN Mingxi, WANG Yichuan, ZHANG Jingwen, ZHAO Dan, WANG Zhixin, LI Jinquan, LIU Zhihong. Research Progress in Different Exogenous Substances Affecting Muscle Fiber Development[J]. Animal Husbandry and Feed Science, 2023, 44(3): 55-62.
[1] |
LEFAUCHEUR L. A second look into fibre typing-Relation to meat quality[J]. Meat Science, 2010, 84(2):257-270.
doi: 10.1016/j.meatsci.2009.05.004 |
[2] |
SUZUKI A, CASSENS R G. A histochemical study of myofiber types in muscle of the growing pig[J]. Journal of Animal Science, 1980, 51(6):1449-1461.
pmid: 6451606 |
[3] |
SEGAL D, DHANYASI N, SCHEJTER E D, et al. Adhesion and fusion of muscle cells are promoted by filopodia[J]. Developmental Cell, 2016, 38(3):291-304.
doi: 10.1016/j.devcel.2016.07.010 pmid: 27505416 |
[4] | DHANYASI N, SEGAL D, SHIMONI E, et al. Surface apposition and multiple cell contacts promote myoblast fusion in Drosophila flight muscles[J]. Journal of Cell Biology, 2015, 211(1):191-203. |
[5] |
MURACH K A, FRY C S, KIRBY T J, et al. Starring or supporting role? Satellite cells and skeletal muscle fiber size regulation[J]. Physiology, 2018, 33(1):26-38.
doi: 10.1152/physiol.00019.2017 pmid: 29212890 |
[6] | 施红梅, 何洋, 杜彦丽, 等. 畜禽骨骼肌肌纤维特性及其发育机制研究进展[J]. 中国畜牧兽医, 2021, 48(9):3191-3199. |
[7] | YOUN-CHUL R, LEE EUN- A, CHAI H H, et al. Effects of a novel p.A41P mutation in the swine myogenic factor 5 (MYF5) gene on protein stabilizing, muscle fiber characteristics and meat quality[J]. Korean Journal for Food Science of Animal Resources, 2018, 38(4):711-717. |
[8] |
BOUDJADI S, CHATTERJEE B, SUN W Y, et al. The expression and function of PAX3 in development and disease[J]. Gene, 2018, 666:145-157.
doi: S0378-1119(18)30469-4 pmid: 29730428 |
[9] |
BORELLO U, BERARDUCCI B, MURPHY P, et al. The Wnt/β-catenin pathway regulates gli-mediated Myf5 expression during somitogenesis[J]. Development, 2006, 133(18):3723-3732.
doi: 10.1242/dev.02517 |
[10] | 侯任达, 张润, 侯欣华, 等. 畜禽肌纤维发育规律及相关基因研究进展[J]. 畜牧兽医学报, 2022, 53(10):3279-3286. |
[11] |
HUANG Y J, WEN H S, ZHANG M Z, et al. The DNA methylation status of MyoD and IGF-Ⅰ genes are correlated with muscle growth during different developmental stages of Japanese flounder (Paralichthys olivaceus)[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 2018, 219/220:33-43.
doi: 10.1016/j.cbpb.2018.02.005 |
[12] | 赵阳. 母体或子代日粮中添加甲基供体对生长育肥猪生长性能和肉品质的影响[D]. 雅安: 四川农业大学, 2018. |
[13] |
DU J J, SHEN L Y, ZHANG P W, et al. The regulation of skeletal muscle fiber-type composition by betaine is associated with NFATc1/MyoD[J]. Journal of Molecular Medicine, 2018, 96(7):685-700.
doi: 10.1007/s00109-018-1657-2 |
[14] |
CAI S F, ZHU Q, GUO C L, et al. MLL1 promotes myogenesis by epigenetically regulating Myf5[J]. Cell Proliferation, 2020, 53(2):e12744.
doi: 10.1111/cpr.v53.2 |
[15] |
LIU S G, SUN Y M, ZHAO R, et al. Isoleucine increases muscle mass through promoting myogenesis and intramyocellular fat deposition[J]. Food and Function, 2021, 12(1):144-153.
doi: 10.1039/D0FO02156C |
[16] |
ZHAO Y, LI J Y, JIANG Q, et al. Leucine improved growth performance, muscle growth, and muscle protein deposition through AKT/TOR and AKT/FOXO3a signaling pathways in hybrid catfish Pelteobagrus vachelli × Leiocassis longirostris[J]. Cells, 2020, 9(2):327.
doi: 10.3390/cells9020327 |
[17] |
LIU Q, ZHANG X L, CHENG M B, et al. PRMT1 activates myogenin transcription via MyoD arginine methylation at R121[J]. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2019, 1862(10):194442.
doi: 10.1016/j.bbagrm.2019.194442 |
[18] |
GHANIM H, DHINDSA S, BATRA M, et al. Effect of testosterone on FGF2, MRF4, and myostatin in hypogonadotropic hypogonadism: Relevance to muscle growth[J]. The Journal of Clinical Endocrinology and Metabolism, 2019, 104(6):2094-2102.
doi: 10.1210/jc.2018-01832 |
[19] |
JAMA A, HUANG D T, ALSHUDUKHI A A, et al. Lipin1 is required for skeletal muscle development by regulating MEF2c and MyoD expression[J]. The Journal of Physiology, 2019, 597(3):889-901.
doi: 10.1113/JP276919 pmid: 30511745 |
[20] |
LV W, JIN J J, XU Z Y, et al. lncMGPF is a novel positive regulator of muscle growth and regeneration[J]. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11(6):1723-1746.
doi: 10.1002/jcsm.v11.6 |
[21] |
ZHANG W W, TONG H L, ZHANG Z H, et al. Transcription factor EGR1 promotes differentiation of bovine skeletal muscle satellite cells by regulating MyoG gene expression[J]. Journal of Cellular Physiology, 2018, 233(1):350-362.
doi: 10.1002/jcp.v233.1 |
[22] |
LIU L Y, HU R, YOU H Y, et al. Formononetin ameliorates muscle atrophy by regulating myostatin-mediated PI3K/Akt/FoxO3a pathway and satellite cell function in chronic kidney disease[J]. Journal of Cellular and Molecular Medicine, 2021, 25(3):1493-1506.
doi: 10.1111/jcmm.16238 pmid: 33405354 |
[23] |
AWAD K, AHUJA N, FIEDLER M, et al. Ionic silicon protects oxidative damage and promotes skeletal muscle cell regeneration[J]. International Journal of Molecular Sciences, 2021, 22(2):497.
doi: 10.3390/ijms22020497 |
[24] |
WU Z Q, XU H, XU Y M, et al. Andrographolide promotes skeletal muscle regeneration after acute injury through epigenetic modulation[J]. European Journal of Pharmacology, 2020, 888:173470.
doi: 10.1016/j.ejphar.2020.173470 |
[25] | ZAINUL AZLAN N, MOHD YUSOF Y A, ALIAS E, et al. Chlorella vulgaris modulates genes and muscle-specific microRNAs expression to promote myoblast differentiation in culture[J]. Evidence-based Complementary and Alternative Medicine, 2019, 2019:1-16. |
[26] |
ADDICKS G C, BRUN C E, SINCENNES M C, et al. MLL1 is required for PAX7 expression and satellite cell self-renewal in mice[J]. Nature Communications, 2019, 10:4256.
doi: 10.1038/s41467-019-12086-9 pmid: 31534153 |
[27] |
BAGGERMAN J O, THOMPSON A J, JENNINGS M A, et al. Effects of encapsulated methionine on skeletal muscle growth and development and subsequent feedlot performance and carcass characteristics in beef steers[J]. Animals, 2021, 11(6):1627.
doi: 10.3390/ani11061627 |
[28] |
LI X Z, YAN Y, ZHANG J F, et al. Oleic acid in the absence of a PPARγ agonist increases adipogenic gene expression in bovine muscle satellite cells[J]. Journal of Animal Science, 2019, 97(10):4114-4123.
doi: 10.1093/jas/skz269 |
[29] |
BASTOS U M C, ANDRADE ROSA I, TEIXEIRA J D, et al. Isoproterenol induces an increase in muscle fiber size by the proliferation of Pax7-positive cells and in a mTOR-independent mechanism[J]. Cell Biology International, 2019, 43(12):1425-1434.
doi: 10.1002/cbin.v43.12 |
[30] | 王琴. 睾酮通过PI3K-Akt信号通路调控鸡胚成肌细胞增殖的研究[D]. 南京: 南京农业大学, 2019. |
[31] |
SATO T, HIGASHIOKA K, SAKURAI H, et al. Core transcription factors promote induction of PAX3-positive skeletal muscle stem cells[J]. Stem Cell Reports, 2019, 13(2):352-365.
doi: S2213-6711(19)30232-2 pmid: 31353225 |
[32] |
MAGLI A, BAIK J, POTA P, et al. Pax3 cooperates with Ldb1 to direct local chromosome architecture during myogenic lineage specification[J]. Nature Communications, 2019, 10:2316.
doi: 10.1038/s41467-019-10318-6 pmid: 31127120 |
[33] |
SONG R H, ZHAO S N, XU Y, et al. MRTF-a regulates myoblast commitment to differentiation by targeting PAX7 during muscle regeneration[J]. Journal of Cellular and Molecular Medicine, 2021, 25(18):8645-8661.
doi: 10.1111/jcmm.16820 pmid: 34347392 |
[34] |
LING Y H, SUI M H, ZHENG Q, et al. miR-27b regulates myogenic proliferation and differentiation by targeting Pax3 in goat[J]. Scientific Reports, 2018, 8:3909.
doi: 10.1038/s41598-018-22262-4 |
[35] |
DE MORREE A, KLEIN J D D, GAN Q, et al. Alternative polyadenylation of Pax3 controls muscle stem cell fate and muscle function[J]. Science, 2019, 366(6466):734-738.
doi: 10.1126/science.aax1694 pmid: 31699935 |
[36] | TAN Y, SHEN L Y, GAN M L, et al. Downregulated miR-204 promotes skeletal muscle regeneration[J]. BioMed Research International, 2020, 2020:3183296. |
[37] |
JOANNA B, IWONA G, MACIEJ D, et al. Transient microRNA expression enhances myogenic potential of mouse embryonic stem cells[J]. Stem Cells, 2018, 36(5):655-670.
doi: 10.1002/stem.2772 pmid: 29314416 |
[38] |
YOUSUF Y, DATU A, BARNES B, et al. Metformin alleviates muscle wasting post-thermal injury by increasing Pax7-positive muscle progenitor cells[J]. Stem Cell Research and Therapy, 2020, 11(1):18.
doi: 10.1186/s13287-019-1480-x pmid: 31915055 |
[39] |
WANG B, NIE W, FU X, et al. Neonatal vitamin A injection promotes cattle muscle growth and increases oxidative muscle fibers[J]. Journal of Animal Science and Biotechnology, 2018, 9:82.
doi: 10.1186/s40104-018-0296-3 pmid: 30459947 |
[40] |
SWIERCZEK-LASEK B, NESKA J, KOMINEK A, et al. Interleukin 4 moderately affects competence of pluripotent stem cells for myogenic conversion[J]. International Journal of Molecular Sciences, 2019, 20(16):3932.
doi: 10.3390/ijms20163932 |
[41] |
SAH J P, HAO N T T, HAN X H, et al. Ectonucleotide pyrophosphatase 2 (ENPP2) plays a crucial role in myogenic differentiation through the regulation by WNT/β-Catenin signaling[J]. The International Journal of Biochemistry and Cell Biology, 2020, 118:105661.
doi: 10.1016/j.biocel.2019.105661 |
[42] |
ADHIKARI A, DAVIE J. JARID2 and the PRC2 complex regulate skeletal muscle differentiation through regulation of canonical Wnt signaling[J]. Epigenetics and Chromatin, 2018, 11(1):46.
doi: 10.1186/s13072-018-0217-x |
[43] |
DANCEVIC C, GIBERT Y, BERGER J, et al. The ADAMTS5 metzincin regulates zebrafish somite differentiation[J]. International Journal of Molecular Sciences, 2018, 19(3):766.
doi: 10.3390/ijms19030766 |
[44] |
MUMFORD P W, ROMERO M A, MAO X, et al. Cross talk between androgen and Wnt signaling potentially contributes to age-related skeletal muscle atrophy in rats[J]. Journal of Applied Physiology, 2018, 125(2):486-494.
doi: 10.1152/japplphysiol.00768.2017 pmid: 29722624 |
[45] |
HUNTER A, DAI Y K, BROWN K J, et al. TAK1/Map3k7 enhances differentiation of cardiogenic endoderm from mouse embryonic stem cells[J]. Journal of Molecular and Cellular Cardiology, 2019, 137:132-142.
doi: S0022-2828(18)30959-3 pmid: 31668971 |
[46] |
LI J W, WANG Y S, WANG Y, et al. Fibronectin type Ⅲ domain containing four promotes differentiation of C2C12 through the Wnt/β-catenin signaling pathway[J]. The FASEB Journal, 2020, 34(6):7759-7772.
doi: 10.1096/fsb2.v346 |
[47] |
HAN S S, CUI C, HE H R, et al. Myoferlin regulates Wnt/β-catenin signaling-mediated skeletal muscle development by stabilizing dishevelled-2 against autophagy[J]. International Journal of Molecular Sciences, 2019, 20(20):5130.
doi: 10.3390/ijms20205130 |
[48] |
YIN H D, HAN S S, CUI C, et al. Plectin regulates Wnt signaling mediated-skeletal muscle development by interacting with Dishevelled-2 and antagonizing autophagy[J]. Gene, 2021, 783:145562.
doi: 10.1016/j.gene.2021.145562 |
[49] |
LIU D, LI S, CUI Y F, et al. Podocan affects C2C12 myogenic differentiation by enhancing Wnt/β-catenin signaling[J]. Journal of Cellular Physiology, 2019, 234(7):11130-11139.
doi: 10.1002/jcp.27763 pmid: 30652305 |
[50] |
HINDI S M, SHIN J, GALLOT Y S, et al. MyD88 promotes myoblast fusion in a cell-autonomous manner[J]. Nature Communications, 2017, 8:1624.
doi: 10.1038/s41467-017-01866-w pmid: 29158520 |
[51] | OKUHARA S, BIRJANDI A A, ADEL AL-LAMI H, et al. Temporospatial sonic hedgehog signalling is essential for neural crest-dependent patterning of the intrinsic tongue musculature[J]. Development, 2019, 146(21):180075. |
[52] | MOK G F, LOZANO-VELASCO E, MANIOU E, et al. miR-133 mediated regulation of the hedgehog pathway orchestrates embryo myogenesis[J]. Development, 2018, 145(12):159657. |
[53] |
ZHANG Y, YU B, YU J, et al. Butyrate promotes slow-twitch myofiber formation and mitochondrial biogenesis in finishing pigs via inducing specific microRNAs and PGC-1α expression[J]. Journal of Animal Science, 2019, 97(8):3180-3192.
doi: 10.1093/jas/skz187 |
[54] | 张封东. 胚蛋给养N-氨甲酰谷氨酸对肉仔鸡肉品质的影响[D]. 北京: 中国农业科学院, 2020. |
[55] | 王曦, 肖康, 刘文斌, 等. 饲料脂肪酸碳链长度对团头鲂生长、肌纤维发育及肉质的影响[J/OL]. 水产学报:1-15[2022-10-06]. http://kns.cnki.net/kcms/detail/31.1283.S.20220722.1335.002.html. |
[56] | 王聪聪. DHA对团头鲂生长、肌纤维发育和细胞周期的影响研究[D]. 南京: 南京农业大学, 2020. |
[57] |
WANG X Y, CHEN X L, HUANG Z Q, et al. microRNA-499-5p regulates porcine myofiber specification by controlling Sox6 expression[J]. Animal, 2017, 11(12):2268-2274.
doi: 10.1017/S1751731117001008 |
[58] |
ZHANG Y, YAN H L, ZHOU P, et al. microRNA-152 promotes slow-twitch myofiber formation via targeting uncoupling protein-3 gene[J]. Animals, 2019, 9(9):669.
doi: 10.3390/ani9090669 |
[59] | FIGEAC N, MOHAMED A D, SUN C S, et al. Vgll3 operates via Tead1, Tead3 and Tead4 to influence myogenesis in skeletal muscle[J]. Journal of Cell Science, 2019, 132(13):225946. |
[60] |
LI M J, TANG X C, YOU W N, et al. HMEJ-mediated site-specific integration of a myostatin inhibitor increases skeletal muscle mass in porcine[J]. Molecular Therapy - Nucleic Acids, 2021, 26:49-62.
doi: 10.1016/j.omtn.2021.06.011 |
[61] | XU M, CHEN X L, HUANG Z Q, et al. Procyanidin B2 promotes skeletal slow-twitch myofiber gene expression through the AMPK signaling pathway in C2C12 myotubes[J]. Journal of Agricultural and Food Chemistry, 2020, 68(5):1306-1314. |
[62] |
GOMES G, BAGRI K M, ANDRADE ROSA I, et al. Activation of YAP regulates muscle fiber size in a PKC-dependent mechanism during chick in vitro myogenesis[J]. Journal of Muscle Research and Cell Motility, 2022, 43(2):73-86.
doi: 10.1007/s10974-021-09608-8 |
[63] | 宋燕. 酶解大豆蛋白对生长中期草鱼生长性能和肌肉品质的影响及机制研究[D]. 雅安: 四川农业大学, 2020. |
[64] |
SON Y H, JANG E J, KIM Y W, et al. Sulforaphane prevents dexamethasone-induced muscle atrophy via regulation of the Akt/Foxo1 axis in C2C12 myotubes[J]. Biomedicine and Pharmacotherapy, 2017, 95:1486-1492.
doi: S0753-3322(17)32705-1 pmid: 28946211 |
[65] |
PICARD B, GAGAOUA M. Muscle fiber properties in cattle and their relationships with meat qualities:An overview[J]. Journal of Agricultural and Food Chemistry, 2020, 68(22):6021-6039.
doi: 10.1021/acs.jafc.0c02086 |
[66] |
QUIAT D, VOELKER K A, PEI J M, et al. Concerted regulation of myofiber-specific gene expression and muscle performance by the transcriptional repressor Sox6[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(25):10196-10201.
doi: 10.1073/pnas.1107413108 pmid: 21633012 |
[67] |
LAHMANN I, BRÖHL D, ZYRIANOVA T, et al. Oscillations of MyoD and Hes1 proteins regulate the maintenance of activated muscle stem cells[J]. Genes and Development, 2019, 33(9/10):524-535.
doi: 10.1101/gad.322818.118 |
[68] |
LUO W, LIN Z T, CHEN J H, et al. TMEM 182 interacts with integrin beta 1 and regulates myoblast differentiation and muscle regeneration[J]. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12(6):1704-1723.
doi: 10.1002/jcsm.12767 pmid: 34427057 |
[1] | 李广西, 韩婷婷, 吴自豪, 吴静. 新疆维吾尔自治区阿克苏地区某屠宰场羊源大肠杆菌MLST分型、耐药性分析和毒力基因检测[J]. 畜牧与饲料科学, 2024, 45(2): 95-102. |
[2] | 邓朴明, 赵慧钢, 余复昌, 石团员, 孙洪超, 周炜, 周芷锦, 赵爱云, 齐萌. 杭州市规模化养殖场湖羊芽囊原虫的PCR检测与基因亚型鉴定[J]. 畜牧与饲料科学, 2024, 45(2): 103-108. |
[3] | 黄美芝, 何奇松, 冯淑萍, 龙凤, 尹彦文, 莫胜兰, 胡丽萍, 黄胜斌, 韩银华, 周庆安, 蓝惠华, 韦海娜, 魏园园, 甘雨, 施开创. 广西壮族自治区猪圆环病毒2型(PCV2)分子流行病学调查及遗传变异分析[J]. 畜牧与饲料科学, 2024, 45(2): 109-115. |
[4] | 赵耀, 邢国锋, 苏帆帆, 高攀, 彭健, 吴自豪, 吴静. 新疆维吾尔自治区塔额垦区牛源大肠杆菌耐药性、CTX-M基因携带情况与毒力基因检测[J]. 畜牧与饲料科学, 2024, 45(1): 94-101. |
[5] | 马爱军, 李佳, 金敏, 金依璇, 刘诗语, 刘凯强, 刘燕, 甘露, 巴音查汗·盖力克. 新疆维吾尔自治区阿克苏地区牛羊体表蜱携带斑点热群立克次体调查[J]. 畜牧与饲料科学, 2024, 45(1): 107-113. |
[6] | 路亚男, 丁文丽, 岳涛静, 徐博文, 黄淑成. 整合素通过PI3K/Akt信号通路调控畜禽骨骼健康的研究进展[J]. 畜牧与饲料科学, 2024, 45(1): 120-128. |
[7] | 魏媛媛, 红梅, 王海生. 蒙药红花清肝13味丸治疗CCl4诱导小鼠肠道损伤的转录组测序分析研究[J]. 畜牧与饲料科学, 2023, 44(6): 13-21. |
[8] | 林彭楚彬, 孙三山, 高亚杰, 阮超, 严杜建. FABPs基因家族在动物育种领域的研究进展[J]. 畜牧与饲料科学, 2023, 44(6): 76-81. |
[9] | 石建州, 于金冉, 王彦伟, 王铁军, 李娜, 刘阳坤, 姚伦广. 淅川乌骨鸡出壳前后胸肌的全转录组表达谱分析[J]. 畜牧与饲料科学, 2023, 44(5): 1-7. |
[10] | 李倩倩, 王东阳, 白萨日娜, 刘建琦, 包图雅, 郭晓珍. 睾酮对新生期大鼠支持细胞和精原细胞Adamts16表达的影响[J]. 畜牧与饲料科学, 2023, 44(5): 15-21. |
[11] | 张博文, 司俊飞, 张振杰, 郭嘉栋, 陈荣, 赫永强, 余复昌, 齐萌. 新疆南疆某规模化绵羊养殖场腹泻羔羊隐孢子虫感染情况及其分子鉴定[J]. 畜牧与饲料科学, 2023, 44(5): 115-120. |
[12] | 石玉节,柴贝贝,张彦昕. 鸭源奇异变形杆菌和摩氏摩根菌的分离鉴定、NDM耐药基因检测及中药体外抑菌试验[J]. 畜牧与饲料科学, 2023, 44(5): 121-128. |
[13] | 卞康坤, 包玉龙, 王利. 非酒精性脂肪性肝病发展及向肝癌转变过程中的分子调控机理研究进展[J]. 畜牧与饲料科学, 2023, 44(4): 29-40. |
[14] | 杨航, 柳序. 畜禽肉质性状相关候选基因的研究进展[J]. 畜牧与饲料科学, 2023, 44(4): 55-60. |
[15] | 薛文, 王凌云, 王云峰, 张振杰, 赵爱云, 王甜, 齐萌. 新疆部分地区屠宰场羊源细粒棘球蚴分子鉴定及其遗传多样性分析[J]. 畜牧与饲料科学, 2023, 44(4): 122-128. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||